Линза видеокамеры Стоковые фотографии и лицензионные изображения. Камеры линза


Устройство объектива

© 2015 Vasili-photo.com

Объектив следует считать ключевым узлом оптического прибора под названием фотоаппарат. Всё верно: не матрицу, а именно объектив. Фотография – это изображение, и не что иное, как фотографический объектив формирует это изображение на светочувствительном материале. Матрица лишь преобразует созданное объективом изображение в цифровую форму.

Фотограф не обязан быть экспертом в области прикладной оптики, но наличие некоторого представления о том, как работает объектив вашей фотокамеры, не только не помешает вашему творческому росту, но и поможет сделать фотосъёмку более осознанной и управляемой.

Конструкция объектива

С основной задачей фотографического объектива – собрать свет, идущий от снимаемой сцены, и сфокусировать его на матрице или плёнке фотоаппарата – может справиться обычная двояковыпуклая линза. Однако качество изображения при этом будет весьма посредственным из-за обилия оптических аберраций. Чтобы обеспечить оптимальное качество картинки, в оптическую схему объектива вводятся дополнительные линзы, корректирующие световой поток, исправляющие аберрации и придающие объективу требуемые свойства. Число оптических элементов в современных объективах может в отдельных случаях достигать двух десятков и более. Элементы могут быть объединены в группы и все вместе они должны действовать как единая собирающая оптическая система.

Помимо оптического блока, т.е. системы линз, расположенных в определённой последовательности, конструкция объектива включает в себя также ряд вспомогательных механизмов, обеспечивающих наводку на резкость, управление диафрагмой, изменение фокусного расстояния (в зум-объективах), оптическую стабилизацию и пр.

Оправа, т.е. корпус объектива, соединяет все его компоненты воедино, а также служит для крепления объектива к фотоаппарату.

Фокусное расстояние

Фокусное расстояние является основной характеристикой не только фотографического объектива, но и вообще любой оптической системы.

Фокусным расстоянием называют расстояние от оптического центра объектива до плоскости матрицы или плёнки. Это определение не вполне корректно, но зато оно доступно пониманию даже неискушенного в оптике читателя. Для тех же, кто ценит строгость формулировок, я приведу более наукообразное определение:

Заднее фокусное расстояние объектива – это расстояние от задней главной плоскости до заднего фокуса.

F – фокус; ƒ – фокусное расстояние.

Почему фокусное расстояние названо задним? Потому что существует ещё и не представляющее для нас никакого интереса переднее фокусное расстояние, указывающее на особенности хода лучей света в обратном направлении, т.е. из камеры. В связи с тем, что в фотографии для нас важен ход лучей, направленных от объекта в камеру, а не наоборот, мы будем говорить преимущественно о заднем фокусном расстоянии объектива. Во всех тех случаях, когда я употребляю словосочетание «фокусное расстояние» без каких либо уточняющих слов, я подразумеваю именно заднее фокусное расстояние.

Быть может, у читателя вызывают затруднение термины «задняя главная плоскость» и «задний фокус»? Попробую объяснить.

Истинный ход лучей в объективе, состоящем из множества линз, достаточно сложен и замысловат. Однако для упрощения расчётов допустимо мысленно заменить все линзы объектива, единственной собирающей линзой, преломляющая сила которой соответствует преломляющей силе объектива в целом. При этом действие всех преломляющих поверхностей объектива сводится к действию главных плоскостей воображаемой линзы. Главной плоскостью называется условная плоскость, пересекая которую лучи света меняют своё направление. Таких плоскостей обычно две, поскольку лучи света, идущие в камеру, и лучи, идущие из камеры, будут преломляться по-разному. Главная плоскость, характеризующая ход лучей в прямом направлении (от объекта в камеру), называется задней главной плоскостью. Её-то и следует считать условным оптическим центром объектива.

Задний фокус – это точка, в которой пересекаются первоначально параллельные лучи после прохождения через объектив. Очевидно, что для получения резкого изображения бесконечно удалённого объекта, плоскость матрицы или плёнки должна совпадать с фокальной плоскостью, т.е. пересекать оптическую ось объектива именно в точке заднего фокуса.

Расстояние же между главной плоскостью и фокусом называется фокусным расстоянием.

Как известно, фокусное расстояние измеряется в миллиметрах. На основании соотношения между фокусным расстоянием объектива и диагональю кадра, объективы принято разделять на три условные группы:

  • нормальные объективы, фокусное расстояние которых приблизительно равно диагонали кадра;
  • длиннофокусные объективы, фокусное расстояние которых превышает диагональ кадра;
  • короткофокусные объективы, фокусное расстояние которых меньше диагонали кадра.

От фокусного расстояния зависит угол изображения, а также масштаб и перспектива снимка. Художественная сторона вопроса подробно освещена в статье «Фокусное расстояние и перспектива».

Хочется подчеркнуть, что фокусное расстояние не является в буквальном смысле «длиной» объектива и лишь косвенно указывает на его линейные размеры. Физически объектив может быть как длиннее, так и короче своего фокусного расстояния. Следует понимать, что из-за особенностей конструкции многих современных объективов их задняя главная плоскость может располагаться как в пределах системы линз, так и за её пределами.

В случае если задняя главная плоскость вынесена вперёд, фокусное расстояние объектива будет превышать его физические размеры. Такой объектив называется телеобъективом. Практически все современные длиннофокусные объективы являются телеобъективами, что позволяет уменьшить их габариты.

Если задняя главная плоскость расположена в середине объектива, то фокусное расстояние оказывается меньше расстояния от переднего элемента объектива до заднего фокуса. Таковы нормальные и умеренно короткофокусные объективы.

И, наконец, задняя главная плоскость может лежать позади объектива. В этом случае фокусное расстояние будет короче заднего фокального отрезка, т.е. расстояния от заднего оптического элемента до заднего фокуса. Такие объективы называются ретрофокусными объективами или объективами с удлинённым задним отрезком. Зачем нужна столь сложная схема? Ведь габариты она явно не экономит. Дело в том, что наличие поворотного зеркала в зеркальных фотоаппаратах налагает жёсткие ограничения на минимальную допустимую величину заднего фокального отрезка. Иными словами, зеркало не позволяет приблизить объектив вплотную к матрице или плёнке, а это значит, что короткофокусные объективы для зеркальных фотокамер должны проектироваться по ретрофокусной схеме.

Что касается беззеркальных систем, то там подобное конструкционное ограничение отсутствует, и короткофокусные объективы могут быть весьма компактными по сравнению с аналогами для зеркальных аппаратов.

Диафрагма

Диафрагма служит для управления интенсивностью светового потока, проходящего через объектив. Диафрагма представляет собой непрозрачную перегородку, составленную из подвижных лепестков-ламелей (чаще всего числом 5-9). В центре перегородки лепестки формируют более-менее круглое отверстие, диаметр которого может изменяться в широких пределах, дозируя поступающий в камеру свет. Перемещение лепестков диафрагмы осуществляется посредством пружины или электромагнитного привода.

Первая и важнейшая функция диафрагмы – управление экспозицией, вторая – контроль над глубиной резкости.

Мерой светопропускающей способности объектива является диафрагменное число или число диафрагмы, представляющее собой отношение между фокусным расстоянием объектива и диаметром отверстия диафрагмы. Например, при фокусном расстоянии объектива 200 мм и диаметре отверстия диафрагмы 50 мм их отношение будет равно: 200 ÷ 50 = 4. Последнее обычно записывается как f/4 и означает, что диаметр отверстия диафрагмы в четыре раза меньше фокусного расстояния объектива.

Что будет, если мы уменьшим диаметр отверстия, скажем, до 25 мм? Число диафрагмы окажется равным: 200 ÷ 25 = 8. Таким образом, чем меньше относительное отверстие, тем больше диафрагменное число.

Почему говорят именно об относительном отверстии, а не просто о диаметре отверстия диафрагмы? Потому, что нас в данном случае не интересуют конкретные значения фокусного расстояния и диаметра отверстия, а лишь отношение между ними. Число диафрагмы – величина безразмерная. Независимо от своего фокусного расстояния все объективы, диафрагма которых установлена на f/8, будут пропускать одинаковое количество света. При этом очевидно, что фактический диаметр отверстия будет тем больше, чем больше фокусное расстояние объектива – главное, чтобы их отношение оставалось неизменным.

Для того чтобы уменьшить количество света, проходящего через объектив, в два раза, т.е. на одну ступень экспозиции (EV), необходимо в два раза уменьшить площадь отверстия диафрагмы. Его диаметр при этом уменьшится в √2 раза. В связи с этим диафрагменные числа, отстоящие друг от друга на одну ступень, различаются в √2, т.е. примерно в 1,414 раза, и образуют следующий стандартный ряд: f/1; f/1,4; f/2; f/2,8; f/4, f/5,6; f/8; f/11; f/16; f/22; f/32; f/45; f/64.

Минимальное доступное значение диафрагмы, т.е. максимальный размер относительного отверстия конкретного объектива, принято называть его светосилой.

В большинстве современных объективов используется механизм т.н. «прыгающей» или «моргающей» диафрагмы. Суть его в том, что вне зависимости от того, какое число диафрагмы выбрано для съёмки, диафрагма остаётся полностью открытой до самого момента спуска затвора и только тогда закрывается до заранее выбранного значения. После каждого снимка диафрагма автоматически возвращается в открытое состояние. Это позволяет осуществлять кадрирование, экспозамер и наводку на резкость при максимальной величине относительного отверстия (минимальном числе диафрагмы) и соответствующей ему максимально яркой картинке в видоискателе. В случае же если у фотографа возникает желание визуально оценить глубину резкости будущего кадра, диафрагму можно принудительно закрыть до рабочего значения, используя кнопку репетира диафрагмы.

Байонет

Объектив крепится к фотоаппарату посредством байонетного соединения. На хвостовике оправы объектива имеются лепестки (обычно их три), которым соответствуют пазы во фланце камеры. При установке объектива хвостовик вставляется во фланец и запирается поворотом на небольшой угол. Несимметричность лепестков исключает затрудняет неправильную ориентацию байонета. Чтобы отсоединить объектив необходимо нажать на кнопку и повернуть его в обратную сторону. См. «Смена объектива».

По сравнению с резьбовым соединением байонет обладает двумя основными преимуществами: во-первых, смена объективов происходит быстрее, а во-вторых, обеспечивается более точная ориентация объектива относительно камеры, что необходимо для оптимального совмещения электрических контактов и механических приводов.

Помимо своей основной функции – крепления объектива к камере, – байонет должен также обеспечивать и функциональную связь между ними, согласовывая работу диафрагмы, автофокуса, стабилизатора и прочих устройств. Байонеты большинства современных фотографических систем (Canon EF, Sony E, Fujifilm X) не предполагают какой-либо механической связи между камерой и объективом – обмен информацией осуществляется исключительно через электронный интерфейс. В более традиционных байонетах (например, Nikon F) управление диафрагмой (а для старых моделей объективов ещё и автофокусом) реализовано посредством механических приводов.

Важнейшей характеристикой байонетного крепления является его рабочий отрезок. Рабочий отрезок – это расстояние от опорной поверхности объектива (или опорной поверхности фланца камеры) до фокальной плоскости, т.е. до плоскости матрицы или плёнки. Длина рабочего отрезка зависит от особенностей конструкции фотоаппарата. Так, у зеркальных камер рабочий отрезок значительно больше, чем у беззеркальных, поскольку поворотное зеркало не позволяет сделать корпус камеры слишком плоским.

Не следует путать рабочий отрезок с задним фокальным отрезком. Рабочий отрезок – это фиксированный параметр байонета, и его величина неизменна для всех камер и объективов в рамках данной фотографической системы. Задний фокальный отрезок – параметр конкретного объектива, и его величина может отличаться от величины рабочего отрезка, как в большую, так и в меньшую сторону, в зависимости от модели.

Фокусировка

В исходном положении объектив сфокусирован на бесконечность, т.е. в фокальной плоскости оказывается изображение бесконечно удалённого объекта. Чтобы сфокусировать объектив на более близких объектах, необходимо увеличить дистанцию между задней главной плоскостью объектива и плоскостью матрицы или плёнки. Иными словами, объектив должен быть как бы выдвинут навстречу объекту съёмки.

В простейших объективах с небольшим количеством элементов наводка на резкость осуществляется перемещением всего оптического блока внутри оправы объектива. Иногда движется только передняя линза. Хуже всего, когда она ещё и вращается при фокусировке, поскольку это весьма затрудняет использование поляризационных и градиентных фильтров.

В более сложных объективах применяется внутренняя фокусировка. Внешние размеры объектива в таком случае остаются неизменными, а смещение оптического центра достигается перемещением независимой группы линз внутри объектива. Частным случаем внутренней фокусировки является задняя фокусировка, при которой за наводку на резкость отвечает задняя группа элементов.

Большинство современных объективов предполагают использование автоматической фокусировки. Обычно в оправу автофокусных объективов встроен кольцевой электродвигатель (ультразвуковой или шаговый), который и приводит в движение фокусировочную группу линз. Исключение составляют лишь некоторые классические автофокусные объективы Nikon и Pentax, не имеющие собственного фокусировочного мотора. Мотор в данном случае встроен в камеру, а передача крутящего момента происходит посредством механической муфты.

Зум-объективы

Зум-объективами принято называть объективы с переменным фокусным расстоянием. Конструкция зум-объективов значительно сложнее конструкции дискретных объективов и включает ряд дополнительных оптических элементов, взаимное перемещение которых не только изменяет фокусное расстояние объектива, но и компенсирует возникающие при этом дополнительные оптические аберрации.

Отношение между максимальным и минимальным фокусным расстоянием зум-объектива называется его кратностью. Например, кратность зум-объектива с диапазоном фокусных расстояний 24-70 мм приблизительно равна: 70 ÷ 24 ≈ 3, что позволяет говорить о нём как о 3-х кратном зуме.

Оптический стабилизатор

В объективах, снабжённых оптическим стабилизатором изображения, одна из линз может при помощи электромагнитного привода перемещаться в плоскости, перпендикулярной оптической оси объектива, компенсируя тем самым вибрацию фотоаппарата и предотвращая смазывание изображения.

Об особенностях устройства и практическом применении стабилизированной оптики можно прочесть в статье: «Оптический стабилизатор. Нюансы использования IS и VR».

Светофильтры

Практически все объективы могут использоваться вместе со светофильтрами. Чаще всего фильтры накручиваются на объектив спереди, для чего в оправе объектива предусмотрена специальная резьба. Однако в тех случаях, когда передняя линза объектива отличается необычайно большим диаметром или излишне выпуклой формой, традиционное использование фильтров физически затруднено, в связи с чем и резьба для фильтров может попросту отсутствовать. Существуют два основных подхода к решению этой проблемы. Супертелеобъективы обычно снабжаются выдвижной обоймой, в которую можно вложить стандартный светофильтр небольшого диаметра, после чего обойма вставляется внутрь объектива через специальную прорезь. Многие же сверхширокоугольные объективы в принципе не совместимы со стеклянными фильтрами и вместо этого имеют на хвостовике зажимы для тонких фильтров из пластиковой плёнки. Очевидно, что как внутреннее, так и заднее расположение светофильтров исключает возможность использования прозрачных фильтров для защиты передней линзы от грязи и царапин, предъявляя к вашей аккуратности повышенные требования.

Спасибо за внимание!

Василий А.

Post scriptum

Если статья оказалась для вас полезной и познавательной, вы можете любезно поддержать проект, внеся вклад в его развитие. Если же статья вам не понравилась, но у вас есть мысли о том, как сделать её лучше, ваша критика будет принята с не меньшей благодарностью.

Не забывайте о том, что данная статья является объектом авторского права. Перепечатка и цитирование допустимы при наличии действующей ссылки на первоисточник, причём используемый текст не должен ни коим образом искажаться или модифицироваться.

Желаю удачи!

  Дата публикации: 03.06.2015

Вернуться к разделу "Матчасть"

Перейти к полному списку статей

Для отображения комментариев нужно включить Javascript

vasili-photo.com

Картинки линза видеокамеры, Стоковые Фотографии и Роялти-Фри Изображения линза видеокамеры

Линза видеокамеры — стоковое фотоДиафрагмы диафрагмы объектива камеры — стоковое фотоЦифровой фотоаппарат — стоковое фотоХроматические аберрации в объектив. макрос, высоких iso — стоковое фотоМолодой Бородатый Мужчина Очках Держа Камеру Окно — стоковое фотоОбъектив фотокамеры — стоковое фотоДва объектива камеры — стоковое фотоСтарая камера — стоковое фотоЖенщина - фотограф с камерой — стоковое фотоФотограф — стоковое фотоЦифровые фотоаппараты и ночной город — стоковое фотоЦифровой Фотоаппарат Руках Человека Профессиональный Фотограф — стоковое фотоЦифровой зеркальный фотоаппарат — стоковое фотоЛюди на совещании обсуждения идей — стоковое фотоСимпатичная женщина является профессиональный фотограф с dslr камеры — стоковое фотоЛинза & диафильм на черном — стоковое фотоКрупным Планом Силуэт Объектив Камеры Белом — стоковое фотоОбъектив фотокамеры — стоковое фотоВидоискатель на камеру HD TV — стоковое фотоЦифровой зеркальный фотоаппарат — стоковое фотоКрупным планом старых ретро фильм объектив камеры — стоковое фотоВидео камеры объектив макро — стоковое фотоЦифровой фотоаппарат в фото студии — стоковое фотоПрофессиональные современные dslr камеры — стоковое фотоМолодой Фотограф Съемки Цифровой Камеры Свет Окна — стоковое фотоШирокоугольный объектив для DSLR — стоковое фото

stevanovicigor

4288 x 2848

Камера с широким углом линзы — стоковое фотоРебенок камеры insant — стоковое фото

GreggEisenberg

3381 x 2415

Объектив фотокамеры — стоковое фотоФотоаппарат — стоковое фотоСтарая камера — стоковое фотоЛинзы и кружка кофе — стоковое фотоЦифровой фотоаппарат. Значок 3D, изолированные на белом фоне — стоковое фотоЧерный объектива, изолированные на белом фоне — стоковое фотоСтарая ретро камера на старинном фоне резюме деревянных досок — стоковое фотоМальчик с камерой — стоковое фотоОдин Объектив Темные Поверхности — стоковое фотоЦифровая Зеркальная фотокамера со всех точек обзора — стоковое фото

wingnutdesigns

4961 x 4961

Объектив — стоковое фотоДетский портрет — стоковое фотоФотографии с камеры — стоковое фотоСовременные цифровые Зеркальные камеры — стоковое фотоОтражая Оптический Объектив Темные Поверхности — стоковое фотоСтарые ретро камеры с сердце любовь фотографии творческой концепции — стоковое фотоМолодой Фотограф Держа Цифровую Камеру Отделение Света — стоковое фотоСовременные цифровые камеры — стоковое фотоОбъектив фотокамеры — стоковое фотоВид сверху старые винтажные камеры и фотографии над деревянной коричневый фон — стоковое фотоМасштабирование видео камеры объектив — стоковое фотоОдной Камеры Объектив Силуэт Белом — стоковое фотоЦифровой фотоаппарат — стоковое фотоМужской руки, набрав на ноутбуке — стоковое фотоЦель — стоковое фотоКомпактная камера — стоковое фотоЗакрыть руки женщина, держа ретро камеры — стоковое фотоОператор видеокамеры — стоковое фото

ru.depositphotos.com

Объектив для камеры видеонаблюдения | Правильный выбор

Содержание:

Одной из ключевых составляющих видеокамеры является объектив, который обладает большим количеством собственных характеристик, напрямую связанных с качеством получаемого изображения. Даже самая дорогая высококачественная камера может сильно разочаровать, если к ней неправильно подобрать объектив. 

Объектив – это система линз, предназначенная для проецирования изображения объекта наблюдения на светочувствительный элемент камеры. При прохождении через все линзы объектива часть света теряется. Вместе с ней теряется и четкость проходящей через объектив картинки. 

Этой особенностью обусловлено существование двух видов объективов. Аналоговые – объективы, пропускающие изображение средней четкости, достаточной для установки на стандартных аналоговых камерах. Мегапиксельные. В таких объективах линзы подбираются с высокой четкостью, чтобы размер пятна собираемых на матрице лучей был как можно меньше. Часто в таких объективах используют асферические линзы, обеспечивающие четкие линии не только в центре изображения, но и по его краям. Такие объективы характеризуются разрешением в мегапикселях и подбираются в соответствии с разрешением самой камеры.

Радует тот факт, что сегодня некоторые производители, не стремящиеся сэкономить на качестве компонентов камеры, ставят мегапиксельные объективы на аналоговые камеры, тем самым позволяя пользователям получить великолепную картинку. 

Рассмотрим основные характеристики объективов, для чего они нужны и их влияние на изображение. 

1. Разрешающая сила объектива

Это характеристика фотографического объектива, отображающая его свойства по передаче четкого изображения.  Разрешающая способность объектива оценивается по количеству воспроизводимых штрихов на 1 мм изображения, которое тот способен спроецировать на фоточувствительный элемент (пленку или матрицу цифровой камеры). Само собой разумеется, что при этом снимаемый объект находится в фокусе, а не в зоне резкого изображения для данного объектива.  Для подбора объектива для конкретной камеры удобнее использовать понятие разрешение объектива. Этим термином обозначают максимальное разрешение изображения, поступаемое с камеры, которое объектив может передать без ухудшения качества картинки. Если указано, что объектив подходит для камер 3 Мп, – это значит, что при установке на любую камеру с разрешением до 3 Мп включительно, объектив не будет ухудшать разрешение получаемой картинки. В противном случае будет получено изображение меньшего разрешения.

2. Соответствие размеру матрицы

Каждый объектив рассчитан для построения изображения определенного размера. Поэтому обязательным является подбор объектива под размер матрицы – если производителем указано, что объектив подходит для камер с матрицей 1/3”, то ставить его можно на камеры именно с таким размером матрицы или меньше (например, 1/4"). При установке его на камеру с матрицей 1/2.5" часть матрицы не будет перекрываться объективом и на изображении по краям будут видны черные области. 

3. Фокусное расстояние или расстояние от оптического центра объектива до плоскости сенсора

В первую очередь нужно определиться, необходим объектив с фиксированным фокусным расстоянием или с переменным. Если для объектива с постоянным фокусным расстоянием все понятно: камера с таким объективом при выходе с завода обладает четкой сфокусированной картинкой. То для камер, укомплектованных объективом с переменным фокусным расстоянием, может потребоваться настройка фокуса – фокусировка.  Под фокусировкой подразумевается настраивание объектива на точное расстояние до объекта съемки. Настройка производится путем перемещения линз (или группы линз) внутри объектива.  При неизменных остальных параметрах камеры чем меньше фокусное расстояние, тем шире будет угол обзора, но меньше объекты на изображении. И, наоборот, при увеличении фокусного расстояния объекты на изображении будут больше и казаться ближе, но угол обзора будет более узким.

Фокусное расстояние и угол обзора

Объективы с изменяемым фокусным расстоянием имеют одну или несколько подвижных линз, меняя положение которых можно приблизить или отдалить объект по своему усмотрению. Чтобы узнать степень увеличения такого объектива, нужно разделить его максимальное фокусное расстояние на минимальное.  Для выполнения различных задач объективы с переменным фокусным расстоянием могут иметь механическую или моторизированную регулировку. Рассмотрим подробнее такие объективы.  Механическая регулировка осуществляется монтажником непосредственно на объекте и связана с определенными неудобствами – необходимо либо использование специального тестера с монитором, либо связи с напарником, отслеживающим верность настройки на мониторе. Существуют также камеры со звуковой индикацией настройки фокуса, но это скорее редкое исключение, нежели общепринятый стандарт. 

К механическим относятся вариофокальные объективы – это объективы, регулируемые вручную. При настройке вариофокального объектива отдельно регулируются зум и фокус. 

Более удобными являются моторизированные объективы, управляемые дистанционно и настраиваемые уже после монтажа. Регулировка линз таких объективов осуществляется при помощи микроприводов (с отдельной регулировкой зума и фокуса), которые управляются командами оператора. Моторизированные объективы оптимальны в случаях, когда имеется необходимость удаленной настройки камеры или при установке камеры на большой высоте, что связано с риском для жизни.

Моторизированный объектив, в свою очередь, может иметь автоматическую фокусировку, в таком случае он называется трансфокаторным. Фокусировка в трансфокаторе происходит автоматически при настройке зума камеры.  Группы линз трансфокаторного объектива взаимосвязанно перемещаются относительно друг друга таким образом, что при изменении масштаба изображение всегда находится в фокусе. Более совершенным считается трансфокатор, имеющий три мотора, которые управляют масштабированием, фокусировкой и диафрагмой. Но модели с меньшим количеством моторов (например, с двумя – для управления только масштабированием и фокусировкой) также могут выполнять широкий спектр задач.  Основная функция трансфокаторных объективов – не настройка камеры, а быстрое панорамирование, когда требуется мгновенное приближение при слежении за объектом. Как правило, такие объективы используются в поворотных камерах, способных менять свое направление и зум, тем самым осуществляя обзор больших территорий. 

4. Диафрагма

Диафрагма объектива подбирается в зависимости от условий освещенности, так как этот параметр позволяет регулировать количество света, которое проходит через объектив и попадает на матрицу видеокамеры. Диафрагма уменьшает вероятность засветки изображения при интенсивном свете и потерю изображения при недостаточном освещении. 

Разделяют объективы с ручной и автоматической диафрагмой.  Ручная диафрагма регулируется, соответственно, вручную на корпусе камеры или через меню камеры. Объективы с ручной диафрагмой используются в помещениях с постоянным освещением. Это может быть офис, учебное заведение или круглосуточно работающий супермаркет.

 

Автоматическая диафрагма видеокамеры управляется сигналом, который поступает с камеры при помощи специального моторчика, который крепится к объективу или при помощи встроенного в плату видеокамеры элемента управления. То есть камера самостоятельно обрабатывает сигнал, поступающий с матрицы, оценивает количество света и посылает на объектив команду, в соответствии с которой устанавливается необходимая степень открытости диафрагмы – тем самым объектив автоматически настраивается на изменяющиеся условия освещенности. Это позволяет получить одинаково хорошее изображение вне зависимости от уровня освещения. Такие объективы используются преимущественно при уличном наблюдении и в условиях меняющегося освещения на объекте. 

5. Светосила

Данная характеристика показывает, какое количество света проходит через объектив и попадает на матрицу. При прохождении через линзы часть света теряется, так как каждая линза отражает часть попадающего на нее света. При увеличении фокусного расстояния объектива светосила его ухудшается.  Для снижения световых потерь на поверхность линз наносят тончайшие пленки или несколько слоев пленок один поверх другого. Это позволяет увеличить светопропускание и повысить контраст изображения за счет подавления бликов. Чем больше светосила объектива, тем больше света попадет на матрицу и тем лучше качество изображения при съемке в плохом освещении без использования подсветки. Соответственно, в меняющихся условиях освещенности весьма полезной становится автоматическая диафрагма, о которой сказано выше. 

6. ИК-коррекция

Подбор линз в объективе камеры видеонаблюдения осуществляется таким образом, чтобы после прохождения лучами света всех линз (с учетом углов преломления) лучи собирались в определенном месте. При работе в ночном режиме с ИК-подсветкой, имея другой угол преломления, луч инфракрасного света сдвигается в область ИК-диапазона, не собираясь в нужном месте, и точка фокуса смещается. Поэтому в ночное время можно наблюдать легкую расфокусировку. Эту проблему решает такая опция объектива, как ИК-коррекция, позволяющая получать четкую картинку как в дневное, так и в ночное время.

Смещение плоскости изображения при переходе в ИК-режим с использованием объектива без ИК-коррекции

В заключение следует отметить, что к подобру объектива следует подходить внимательно, учитывая множество факторов: задачи, поставленные перед видеонаблюдением, свойства камеры, особенность объекта, его освещенность и многое другое. Использование соответствующего объектива отличает по-настоящему качественное оборудование видеонаблюдения. И при необходимости получения четкой, ясной картинки высокого разрешения качественный и правильно подобранный объектив является обязательным условием.

pb-russia.ru

Камера-линза от Sony подходит для любого смартфона / Sony, смартфоны, камера

DSC-QX10 и DSC-QX100 от Sony (последняя считается немного круче) – это две линзообразные камеры, которые предназначены для работы со смартфонами, а не для замены уже существующих внутренних камер. Это как беспроводные линзы с собственными датчиками изображения, которые подключаются к смартфонам (iOS или Android).

Основные особенности камеры

Они довольно удобны, правда, в них отсутствуют четыре основные характеристики: высококачественное разрешение, низкая светочувствительность, сильный оптический зум и оптическая стабилизация изображения.

QX10 и QX100 – это не просто беспроводные аксессуары. Каждый из них имеет свой индивидуальный КМОП-сенсор (1/2.3-дуюмовый 18,2-мегапиксельный у QX10 и 1,0-дюймовый 20,2-мегапиксельный у QX100). Обе модели способны снимать HD-видео с разрешением в 1080 пикселей и у них обеих есть оптический зум (10-кратный и 3.6-кратный для QX10 и QX100 соответственно).

Камеры-линзы могут работать в паре со смартфонами с помощью Wi-Fi или NFC. В последнем случае объектив камеры следует приложить вплотную к девайсу.

В паре со смартфоном камера обеспечивает высокое разрешение и интуитивное сенсорное управление. Смартфон является самым лучшим вариантом на роль «тела» камеры, потому что он подключен к интернету, а значит, появляется возможность редактирования фотографий и обмена ими через множество приложений, доступных на Android и iOS.

Если вы рассчитываете делать фотографии в условиях низкой освещенности, то лучше купите QX100. В этой моделе не только КМОП-сенсор крупнее, но и диафрагма шире (f/1.8). Это позволит делать хорошие фотографии с размытыми краями. QX100 также выигрывает за счет ручной фокусировки.

Фото и видео, сделанные с помощью этой камеры, сохраняются на карту MicroSD или Memory Stick Micro и на смартфон, так что нет никакой необходимости перетаскивать изображения туда и обратно.

Новые возможности

Да, камеры зависят от смартфона, но совсем не обязательно прикреплять их непосредственно к устройству. Как упоминалось ранее, линзы беспроводные, а значит достаточно того, чтобы оба гаджета были расположены относительно близко друг к другу.

Идея беспроводного объектива для смартфона звучит, безусловно, интересно. Пользователи смогут делать фотографии и снимать видео со всех углов и ракурсов. Линза Sony в одной руке, а смартфон-видоискатель в другой… как будто Wii Remote и Nunchuk. Могут получиться очень интересные фотографии!

www.qwrt.ru

Набор линз для камеры телефона

Собственно, привет. Обзор на комплект расширения способностей встроенной камеры телефона. Коротко — комплект годный. Подробности письмом. Итак, в качестве развлечения с опцией возможного практического применения был заказан данный комплект, в который входит широкоугольное стеклышко(маркировка 0,67х), макролинза, и фишай-линза. Широкоугольный объектив(условно буду называть эти творения китайского гения вот так) получается путем накручивания насадки на макролинзу. Заказ был с ебэя, того лота уже нет, но думаю разницы между ними нет. Конверт-пупырка, все как в лучших домах шеньчженя. Первые изделия такого типа предлагались с абсолютно бестолковыми системами крепления а-ля приклей на клей/скотч/еще какую-нибудь гадость, позже наконец додумались приделать элементарную клипсу, что мы и видим в сабже. Крепление в меру тугое, в местах прилегания к телефону — резиновые вставки, поцарапать трубу непросто. Материал клипсы — хороший пластик, запас прочности есть. Крепление позволяет использовать со многими моделями телефонов, у меня айфон, на плоскую поверхность садится отлично, возможно если камера выступает из корпуса аппарата — возникнут нюансы. В общем конструкцию на фото видно, по ней можно прикинуть подойдет она к вашему аппарату или нет. Еще нюанс — вспышку закрывает, тоже можно учесть. Использование с чехлами так же может внести разнообразие в рутинный процесс фотосъемки. Сами линзы — в металлических оправах, материал оптики остается загадкой, стекла полагаю там нет, да и зачем оно там? Претензий к качеству изготовления нет, все выглядит/работает так как предполагается. Даже крышки сделаны вполне качественно, держатся хорошо. Для хранения удачно подошел чехол для наушников, заказанный ранее с того же ебэя Далее, самое интересное, то есть че оно нам дает и дает ли оно нам вообще хоть что-нибудь? Результат можно попробовать оценить по фото, галерею выкладывать не буду, все же не эль-оптика от кэнон. Лично меня результат устраивает вполне, для меня только макролинза оправдала бы покупку комплекта. Резкость(особенно к краям) конечно не улучшается, но и не падает настолько чтобы не пользоваться насадками. В общем иногда важнее кач

mysku.me

BSP Security - Объективы камер наблюдения

Варифокальные и фиксированные объективы.

 

В фиксированных объективах фокусное расстояние, а значит, и угол обзора жестко зафиксированы. Эти линзы, как правило, имеют фокусное расстояние в 3.6мм, 4.3мм, 8мм, 12мм, 16мм, 25мм и т.д. Чем выше число фокусного расстояния, тем больше теле эффект, и более узкий угол обзора. Важно понимать, что характеристики фокусного расстояния не имеют ничего общего с фактическим размером самого объектива. Как правило, объективы 3,6мм или даже 6мм используются для широких зон просмотра, объективы с большим фокусным расстоянием дадут более сконцентрированную вдаль картинку. Объектив 3,6мм обеспечит угол обзора порядка 90 градусов. 12мм объектив охватывает лишь около 25 градусов, поэтому до приобретения камеры или объектива важно заранее спланировать место монтажа и необходимую зону просмотра.

 

Широкоугольные (двойная дистанция до объекта)

2.8мм и менее

Стандартные (без искажений)     

3.6мм – 4мм

Узкоугольные (половина и менее дистанции до объекта)  

8мм и более

 

 

Варифокальные объективы немного дороже фиксированных, в связи с тем, что вы получаете гибкую систему настройки положения линз. Объективы переменного фокуса (или варифокальные линзы) камер наблюдения позволяют пользователю изменять угол обзора в зависимости от потребностей и задач. Некоторые линзы обеспечивают переменное фокусное расстояние в пределах 4-8мм (широчайший угол обзора на 4 мм и наиболее узкий при 8 мм фокусного расстояния), другие могут обеспечить 5-50мм (50мм для фиксирования удаленного изображения). Наиболее востребованными сегодня варифокальными линзами являются линзы с фокусным расстоянием 2,8-12мм, покрывающие наиболее стандартные потребности специалистов видеонаблюдения и конечных потребителей.

 

Важно понимать, что требуется высокая точность при ручной настройке варифокальных объективов, в то время как объективы с фиксированным фокусом изначально оптимальным образом откалиброваны на получение максимально четкой картинки.

 

Настройки варифокальных объективов.

Следующий момент, на который необходимо обратить внимание при приобретении камер с варифокальными объективами – это легкость настройки фокусного расстояния и диафрагмы. Во многих камерах настройки линзы вынесены наружу корпуса, что удобно при монтаже. Но в этом случае нужно оценивать вероятность случайного стороннего воздействия на элементы настройки линзы (сбой настройки посторонним человеком, погодными явлениями, проч.).

  • объективы с внутренней ручной настройкой – в камерах с таких подходом к настройке объектива необходимо снять лицевую часть корпуса (или открыть ее) и вручную настроить зум и фокус объектива. Существует мнение, что такой порядок несколько снижает удобство настройки камеры при монтаже. Однако, такой подход дает и свои преимущества: гибкость настройки, невозможность сбить уже поставленные настройки). 
  • камеры в ручной внешней настройкой – в камерах реализован простой механизм настройки все того же объектива через набор шестеренок. При этом настройки зума и фокуса выведены наружу камеры, т.е. для настройки нет необходимости снимать лицевую часть корпуса. Однако, набор шестеренок в механизме настройки имеет небольшую дискретность хода, что иногда чувствуется.
  • камеры с роботизированной настройкой – такие камеры содержат внутри автоматизированный механизм, работающий через IP или RS485 протоколы, позволяющий настраивать объектив камеры удаленно (не вручную) через ПО или WEB-interface. Однако, такой подход тоже имеет незначительную дискретность хода настройки и, соответственно, более высокую стоимость камер. Реализуется чаще всего в Буллет камерах из соображений свободного пространства в корпусе:
  1. настройка через ПО зума и фокуса – в таких камерах удаленно настраивается и зум, и фокус независимо друг от друга.
  2. настройка через ПО только зума, фокус автоматически подстраивается под зум – в таких камерах достаточно настроить необходимый зум, фокус подстраивается автоматически.

 

Средние углы обзора линз

При выборе той или иной линзы чаще всего возникает вопрос угла обзора. Упрощенно зависимость угла обзора линзы от фокусного расстояния можно представить таким образом:

 

               Средние углы обзора линз

Линза / фокусное расстояние

Угол обзора

Пример

2,5мм

120°

3,6мм

92°

4,3мм

78°

6,0мм

53°

12мм

25°

25мм

18°

 

А некоторое понимание о зависимости изображени от фокусного расстояния объектива и фактического расстояния до объекта съемки можно получить из следующего изображения:

 

bspsecurity.ru

Объективы

За полтора века использования линз в фотографии их число увеличилось на порядок, и каждая из них зачем-то нужна, но каждая из них дает блик, и если объектив просветленный, то он цветной.

Нет в мире совершенства!

Как хорошо было с камерой-обскурой: не надо фокусировать, не надо думать о глубине резкости, хочешь изменить угол обзора - просто измени расстояние между дыркой и плоскостью изображения, - и никаких хлопот.

Но фотографам вечно не хватает света, и они решили увеличить дырку, а чтобы не потерять резкость, поставили линзу, и вот тут появились сферические аберрации, хроматические аберрации, кома , дисторсия.

В общем, начали с одной линзы, но остановиться не сумели, и стало число линз множиться с катастрофической быстротой.

Установите проигрыватель Flash

Итак, мой рассказ о том, зачем так много линз, и о некоторых терминах, которые часто встречаются при описании объективов.

Основной характеристикой объектива, определяющей его способность давать ту или иную освещенность фотослоя, является светосила. Объектив тем светосильнее, чем больше его отверстие и чем короче его фокусное расстояние. Эта взаимосвязь выражается величиной относительного отверстия, которая показывает, сколько раз диаметр отверстия укладывается в фокусном расстоянии объектива. В фотографии принято следующее деление объективов по светосиле: Сверхсветосильные 0,7-2 Светосильные 2,8-4,5 Малосветосильные 5,6 и менее.

Попытки увеличить светосилу и при этом не очень ухудшить изображение, вероятно, начались в 1812 г., когда Волластон применил выпукло-вогнутую линзу (мениск) в камере-обскуре.

Получилось более яркое изображение, но не очень четкое и не точное по геометрическим размерам, хотя и лучшее, чем с двояковыпуклой линзой.

Дефекты изображения, обусловленные недостатками оптической системы, носят общее название аберрации.

К этим недостаткам относятся: сферическая аберрация; хроматическая аберрация; дисторсия; астигматизм; кома.

Сферическая аберрация вызывается тем, что степень преломления лучей, попадающих на края линзы, больше, чем степень преломления лучей, располагающихся ближе к центру, поэтому широкий пучок лучей после преломления пересекается не в одной, а в нескольких точках.

Путем придания поверхности линзы асферической формы можно устранить сферическую аберрацию. Однако технология изготовления стеклянных асферических линз весьма дорога и получила развитие только в последние годы. Варианты использования свободных от сферической аберрации линз Френеля и плоских линз с переменным показателем преломления не получили развития в фотографии.

На практике при изготовлении фотообъективов влияние сферической аберрации уменьшают путем подбора к собирающей линзе менее сильной рассеивающей линзы. В последнее время получило развитие использование в объективах наряду со стеклянными сферическими линзами и асферических, изготовленных формовкой органических пластиков.

Хроматическая аберрация обусловлена дисперсией света, возникающей при прохождении его через линзу. Это явление связано с тем, что лучи с разной длиной волны преломляются под разными углами.

Значительного уменьшения хроматической аберрации добиваются путем сочетания в оптической системе сильной собирающей линзы, изготовленной из оптического стекла крон, и слабой рассеивающей линзы, изготовленной из стекла флинт. Такая линза называется ахроматической или ландшафтной. Объективы, в которых устранена хроматическая аберрация в двух основных участках спектра,называются ахроматами, а объективы, скорректированные для трех цветов, - апохроматами.

В 1840 г. Шевалье использовал ахромат в первых фотокамерах. Этот объектив состоял из двух линз с различной дисперсией, склеенных вместе.

Дисторсия характеризуется искривлением прямых линий и имеет такое же происхождение, что и сферическая аберрация. На характер дисторсии влияет положение диафрагмы: если диафрагма расположена перед линзой, то дисторсия имеет бочкообразую форму, а если диафрагма расположена за линзой, - то подушкообразную. Этот вид аберрации устранен у симметричных объективов, выполненных из двух одинаковых компонентов, между которыми размещается диафрагма. Объектив, состоящий из двух менисков, называется перископом.

Таким образом, чтобы исправить сферическую и хроматическую аберрации в отдельности, достаточно двух линз. В результате объединения двух ахроматических линз в перископ в 1866 году в Англии Дальмейером был изготовлен объектив, названный "Ректилинеар", а в Германии появился объектив "Апланат" созданный Стейнхейлом. Очень удачный симметричный объектив был сконструирован Рудольфом в 1896 г. и назван "Цейсс Планар". Этот объектив был разработан для использования при относительных отверстиях не более 1:3,5, и стал базовой моделью многих современных стандартных объективов, используемых в малоформатных фотокамерах. Современные объективы такой принципиальной конструкции обладают относительным отверстием до 1:1,4.

Астигматизм делает невозможным получение одновременной резкости вертикальных и горизонтальных линий. Явление астигматизма может возникнуть при недостаточно точной сферичности линзы, но чаще и сильнее оно обнаруживается в том случае, когда объект находится под некоторым углом к ее оптической оси. При этом поверхность линзы для таких наклонных лучей не будет строго симметричной, что и приведет к искажению изображения. Объективы с устраненными астигматизмом и кривизной поля называются анастигматами. Следует сказать, что эти недостатки все же частично присутствуют в объективах, особенно в широкоугольных.

В 1893 г., используя новые виды стекла, Тейлор изготовил асимметричный объектив из трех элементов, который был назван триплетом Кука. Этот объектив, устраняющий астигматизм и кривизну плоскости изображения, был первым среди так называемых анастигматов. Триплет Кука был сконструирован для использования с относительными отверстиями не более 1:4. Анастигмат представляет собой объектив, который полностью свободен от астигматизма для определенного расстояния до объекта и имеет минимальную кривизну плоскости изображения. Дальнейшим развитием триплета стало создание в 1902 году фирмой Цейсс объектива "Тессар", у которого последний компонент триплета был заменен склеенной линзой. Модификации этого объектива используются сегодня при относительных отверстиях не более 1:2,8. В России объективы такого типа выпускаются под названием "Индустар".

Кома является разновидностью сферической аберрации для наклонного к оптической оси линзы пучка света. При этом, в связи с разным характером преломления лучей и асимметричным строением пучка, изображение получается в виде кометообразной фигуры.

Но не только стремление к совершенству изображения приводит к увеличению числа линз. Еще одной причиной, приводящей к увеличению числа линз, является стремление разработчиков объективов вынести главную плоскость за габариты объектива. Классическим примером является телеобъектив, который в простейшем виде представляет собой собирающую линзу, помещенную перед рассеивающей линзой. Если линзы имеют надлежащие фокусные расстояния и соответствующим образом расположены, можно создать систему линз, в которой задняя главная плоскость находится перед системой. Так как фокусное расстояние измеряется от главной плоскости, физическая длина объектива может быть сделана меньше, чем его фокусное расстояние, и поэтому объектив может быть весьма компактным.

Если телеобъектив повернуть на 180 градусов, то задняя главная плоскость может располагаться позади системы линз. Такая конструкция особенно полезна для широкоугольных объективов, предназначенных для малоформатных однообъективных зеркальных камер. Ведь если задняя главная плоскость расположена внутри системы линз, то пространство между крайней линзой и пленкой будет меньше фокусного расстояния и не останется места для зеркала затвора и других необходимых механических частей камеры. Примером обратного телеобъектива является известный у нас объектив "Мир 1".

Останавливаясь на широкоугольных объективах, отмечу, что термин "рыбий глаз" произошел от гидрообъективов, которые имеют нормальный угол зрения под водой, однако, будучи вытащенными на поверхность, превращаются в широкоугольные. Снимки через эти объективы демонстрируют нам то, что увидела бы рыба, если ее вытащить из воды. Широкую известность (см.The Classic Camera Home Page/Classic Lenses) получили фотообъективы "Руссар" , рассчитанные в 1935 г. М.М. Русиновым. Эти объективы имеют на воздухе угол зрения до 120 градусов.

В борьбе за компактность длиннофокусных объективов одних линз оказалось недостаточно, и были созданы зеркально-линзовые объективы. Свет попадает в объектив через круглое отверстие и отражается, по крайней мере, от двух зеркал, прежде чем сфокусируется на плоскости пленки. Так как свет входит в объектив лишь по его периметру, ирисовая диафрагма не может быть использована для уменьшения действующего отверстия, и поэтому для регулирования освещенности применяют светофильтры. Сферические зеркала подвержены значительной сферической аберрации, для исправления этой аберрации обычно используется специальная асферическая линза, называемая корректирующей пластинкой Шмидта. В этих объективах также применяются сферические линзы, которые служат для дополнительной фосировки света.

Обилие линз вызвало естественное желание их подвигать внутри объектива, ведь перемещая линзы, мы можем менять фокусное расстояние, причем если перемещать каждую линзу в отдельности, да еще по сложному закону, то можно получить объектив с переменным фокусным расстоянием и неплохим качеством. Оптические системы с непрерывным изменением увеличения называются панкратическими и подразделяются на вариообъективы и трансфокаторы.

У вариообъектива изменение фокусного расстояния осуществляется посредством непрерывного перемещения одного или ряда компонентов вдоль оптической оси.

Нелинейное перемещение линз в вариообъективах производится с помощью одного или нескольких кулачковых механизмов, поэтому такие системы являются сложными не только по оптическому, но и по механическому устройству.

Трансфокатор представляет собой систему, состоящую из афокальной панкратической насадки с переменным угловым увеличением и объектива с постоянным фокусным расстоянием. Насадка имеет две неподвижные отрицательные линзы, между которыми перемещается положительная линза.

По мере возрастания числа элементов, из которых изготовлен объектив, отраженный и рассеянный поверхностью линз свет становится серьезной проблемой. Если на поверхность линзы нанести слой вещества с определенной толщиной и меньшим показателем преломления, чем у самой линзы, то можно уменьшить отражение от поверхностей линзы. Этот эффект достигается благодаря тому, что свет, отраженный от двух поверхностей, интерферирует с взаимным ослаблением, что уменьшает отражение от линзы. Если длина оптического пути в покрытии точно равна половине длины волны света в среде, то разность фаз двух отраженных лучей составит 180°, и, складываясь, они взаимно погасят друг друга. В результате от линзы вообще не будет отражаться излучение с определенной длиной волны. Это условие может быть удовлетворено только для одной определенной длины волны, однако происходит значительное ослабление отраженного света и для соседних длин волн. При использовании нескольких покрытий с различными показателями преломления отражение от поверхностей линзы может быть значительно уменьшено для большей части видимого спектра. Линзы с таким покрытием называют просветленными. Просветление впервые стали применять в объективах коммерческих фотокамер, начиная с 1950-х годов, а многослойные покрытия — с 1970-х годов.

02.06.1998

Установите проигрыватель Flash

Облако тегов:

...

rss

www.rwpbb.ru