Как появилась первая цифровая камера. Цифровой камера


Аналоговые или цифровые камеры видеонаблюдения: на чем остановиться?

Содержание страницы

Аналоговая или цифровая камера — различны и это заключается напрямую в их наименовании. Но главным фактором при выборе остается важность объекта, куда монтируется устройство. Зачем использовать в месте с малой проходимость цифровую камеру? Может лучше аналоговую?

Техническая сторона

При выборе любого рода камер, необходимо обратить внимание на матрицу устройства и количество мегапикселей. Стоит отметить, что даже цифровая камера изначально получает аналоговый сигнал. Это заключается в параметрах работы видео-оптики.

Основывается технический процесс на электронном датчике, на который, в свою очередь, направлен свет при движении «шторок» в аппарате. Этот датчик разделяют на CMOS или CCD. Данные, получаемые аналоговым CMOS/CCD, генерируются конвертером в цифровой формат. Если камера цифровая (IP), то формат остаётся таким же, если аналоговая — происходит преобразование, посредством всё того же встроенного аналого-цифрового конвертера и поступает на DVR/NVR, в котором происходит кодировка. В IP камере также происходит кодирование, но процесс проводится непосредственно в самом устройстве (камере), то есть не передается на вспомогательные приборы.CMOS или CCD комплектация указывается производителем. Здесь главное понимать, что у CMOS датчиков низкая свето-чувствительность, чем у CCD. Свето-чувствительность обеспечивает устройству шумы при малом освещении. У CCD таких шумов меньше. Это обусловлено «шторками», встроенными в камеру. CMOS, принимая во внимание этот фактор, включает в конструкцию сдвоенных (прокручиваемых) шторок, что незначительно влияет на качество изображения при наблюдении за быстродвижущимися объектами.

На данный момент, существует вспомогательная технология, которая позволяет сделать качество видео лучше. Это так называемая Pixim-технология. На основе матриц CMOS/CCD — генерируется каждый отдельный пиксель с помощью конвертера, что позволяет уравновесить шумы и тени в изображении. В итоге получается качественная картинка.

Что касается мегапикселей, то чем их больше, тем качественней картинка видеонаблюдения.

Аналоговая камера видеонаблюдения

Приборы аналогового типа — это камеры, которые передают данные (информацию) с помощью аналогового сигнала. Устройство используется в комплексе с целой системой видеонаблюдения: видеорегистратором, монитором, мультиплексором и т. п.

Простая схема подключения аналоговой камеры

Простая схема подключения аналоговой камеры

Порядок работы:

  1. Поток света, проходящий через линзы, попадает на матрицу.
  2. Генерируется видеосигнал.
  3. Через кабель сигнал поступает на видеорегистратор.
  4. Данные отображаются на мониторе.

Преимуществом аналоговых камер видеонаблюдения являются:

  1. Взаимосовместимость устройств несмотря на производство от разных компаний.
  2. Процесс монтажа достаточно лёгок.
  3. Простота настроек, через предусмотренное меню в аппарате.
  4. Устройство не пропускает ни одной секунды видео в процессе записи. Фиксируется абсолютно всё.
  5. В комплексе с аппаратом можно установить микрофон.
  6. Низкая себестоимость.
  7. Большой выбор аналоговой видео-оптики.

Недостатки аналоговой видео-оптики:

  1. Уровень защиты от постороннего вмешательства — низкий, то есть отсутствует принцип шифрования.
  2. При воздействии с другими кабелями при монтаже — наблюдаются помехи.
  3. Видео не управляется/просматривается через Интернет.
  4. Качество разрешения — низкопробное (при детализированное съемке предметы не рассматриваются — они размыты).
  5. При использовании с микрофоном, необходимо проводить отдельный кабель для передачи аудиофайлов.
  6. Невозможно воспроизвести данные, полученные камерой, на ПК. Это осуществляется только с примененным дополнительных приборов.
  7. Не имеет режимов цифрового увеличения, отсутствует управление движением через один и тот же подключённый кабель, исключается работа в комплексе с детектором движения и т. п.

При монтаже этого вида камер, следует предусмотреть резервный источник питания, учесть расстояние от других проводок, установить видеорегистратор или вспомогательное устройство для просмотра на ПК.

Цифровая камера видеонаблюдения

Цифровая или IP камера — это оптическое устройство, которое передает данные (информацию) с помощью цифрового сигнала. В комплексе с остальными приборами видеонаблюдения, этот аппарат может передавать качественное видео через интернет.

Схема подключения аналоговых камер для он-лайн просмотра

Принцип работы видео-оптики:

  1. Поток света, проходящий через линзы, попадает на матрицу.
  2. Генерируется электрический сигнал.
  3. Электро-сигнал обрабатывается микропроцессором IP.
  4. Через кабель/Wi-Fi сигнал поступает на видеорегистратор.
  5. Данные отображаются на мониторе.

Стоит отметить, что полученная информация, записывается на диск сразу в цифровом формате.

Преимущества IP камер:

  1. В устройство встроен микрофон и динамик, благодаря этому есть возможность двухсторонней связи диспетчера со сторонним лицом.
  2. Возможна беспроводная установка.
  3. Файлы аудио и видео формата предаются посредством одного кабеля/потока, то есть дополнительно проводить ничего не требуется (в отличие от аналогового оборудования). Аудиоканал уже встроен.
  4. Полученные данные, камерой, можно просматривать через интернет на любом портативном устройстве. Сюда относится и возможность управления системой.
  5. При использовании не требуется резервный источник питания.
  6. Имеется встроенная оперативная память (микропроцессор), который оснащён программным обеспечением (ПО). Что позволяет записывать конкретные циклические видео-файлы, при условии предварительной настройки.
  7. Возможно комплексное использование с датчиками движения. В таком случае видео воспроизводится/записывается при движении объектов.
  8. Каждая из отдельных камер настраивается персонально (индивидуально).
  9. Имеют канал шифрования.

Недостатки IP камер:

  1. Устройство имеет черту пропускать незначительные секунды видео в процессе записи.
  2. Имеют достаточно высокие цены.

Монтаж приборов следует доверить профессионалам, так как необходима настройка не только оборудования, но и принципа передачи данных.

Виды видеокамер

Цифровые и аналоговые устройства применяются для наружного и внутреннего наблюдения.

Различают цифровые аппараты:

  • модульные — преимущественно для скрытого наблюдения;
  • купольные — при горизонтальном расположении поворачиваются на 180 градусов, при вертикальном -на 360, обладают высокой степенью защиты от воздействия окружающей среды;
  • миниатюрные — обладают маленькими размерами, нередко используются в зданиях и для скрытого наблюдения;
  • поворотные — механизм движения, который меняет угол обзора;
  • гидростабилизированные — используются на подвижных конструкциях: линии электропередач и т. п.

Аналоговые имеют меньший спектр исполнения. Предусмотрены миниатюрные, стандартные, купольные, поворотные и не поворотные аппараты. Нередко используется инфракрасная подсветка.

Применение камер видеонаблюдения

Целесообразно использовать какой-либо из видов устройств в соответствии с потребностями, так как объекты разной степени имеют различные условия наблюдения и степень охраняемости.

Оптические камеры аналогового типа используются преимущественно на объектах с небольшой площадью, где безопасность не требует высокого уровня:

  1. Небольшие административные офисы.
  2. Складские помещения.
  3. Парадные домов.
  4. Небольшие автомобильные стоянки.
  5. Кафе, рестораны и т. п.

Оптические камеры цифрового типа используются преимущественно на объектах с большей площадью, где безопасность требует высокого уровня:

  1. Государственные учреждения с высокой степенью безопасности.
  2. Банки.
  3. Музеи.
  4. Ювелирные магазины.
  5. Ломбарды.
  6. Военные объекты и т. п.
Сравнение качества изображения аналоговой и цифровой камеры

Сравнение качества изображения аналоговой и цифровой камеры

Очень важно в таком случае учитывать, что цифровые камеры обладают возможностью чётко рассмотреть лицо, номер или другие детали, в отличие от аналоговых.

Аналоговые и цифровые камеры видеонаблюдения имеют широкий спектр применения. Но главным фактором при выборе является качество видео и цель такого наблюдения. Наиболее безопасными характеристиками обладают цифровые устройства, плюс удобство просмотра через Интернет. Аналоговые же камеры целесообразно использовать на маленьких объектах.

В заключение еще раз приведу видео сравнения изображения получаемого аналоговой и цифровой камеры. Как говориться: «Лучше один раз увидеть…»

arze.ru

Цифровая фотокамера - это... Что такое Цифровая фотокамера?

Цифровой фотоаппарат — устройство, являющееся разновидностью фотоаппарата, в котором светочувствительным материалом является матрица или несколько матриц, состоящая из отдельных пикселей, сигнал с которых представляется, обрабатывается и хранится в самом аппарате в цифровом виде.

Fujifilm FinePix S9000

Несмотря на функциональное сходство, цифровые видеоустройства самого разного назначения, такие как камеры видеонаблюдения и веб-камеры, фотоаппаратами обычно не называются, если не позволяют сохранить снимки в самом устройстве или на вставленном в устройство носителе информации.

Классификация

В ряде случаев современная видеозаписывающая аппаратура имеет функции получения статических снимков, а значительная доля устройств, называемых цифровыми фотоаппаратами, умеет осуществлять запись видеоизображения и звука и выводить видеосигнал в телевизионном формате. Поэтому граница между видео- и фотооборудованием в цифровую эпоху в достаточной степени условна и определяется скорее тем, какие задачи ставит оператор, нежели тем, какова функциональная «начинка» камеры.

Цифровые фотоаппараты можно поделить на несколько классов:

  • Фотоаппараты со встроенной оптикой:
    • Компактные ( «мыльница» традиционных размеров). Характеризуются малыми размерами и весом. Малый физический размер матрицы означает низкую чувствительность или высокий уровень шумов. Также этот тип камер обычно отличает отсутствие или недостаточная гибкость ручных настроек экспозиции.
    • Сверхкомпактные, миниатюрные. Отличаются не только размерами, но часто и отсутствием видоискателя и экрана.
    • Встроенные в другие устройства. Отличаются отсутствием собственных органов управления.
    • Псевдозеркальные — внешним видом напоминают зеркальную камеру, а также, как правило, помимо цифрового дисплея, оснащены видоискателем-глазком. Изображение в видоискателе такого аппарата формируется на отдельном цифровом экране, или на поворачивающемся основном экране. Как правило, имеют резьбу на объективе для присоединения насадок и светофильтров (пример — Konica Minolta серия моделей Z).
    • Полузеркалка — жаргонный термин, описывающий класс аппаратов, в которых имеется наводка по матовому стеклу через съёмочный объектив, однако нет возможности объектив менять. В таких аппаратах оптическая схема содержит светоделительную призму, которая направляет от 10 до 50 % светового потока на матовое стекло, а остальное передается на матрицу. (примеры — Olympus E-10, E-20)
  • Камеры со сменной оптикой:

История

Устройство цифрового фотоаппарата

Светочувствительная матрица

Извлечение Canon Powershot A95

Практически все цифровые фотоаппараты используют флэш-память, но есть также фотоаппараты, где используются оптические диски или дискеты в качестве носителя информации. Ряд фотоаппаратов имеют небольшой объем встроенной флеш-памяти, которой хватает для 2-30 снимков. Самые распространенные на сегодняшний день (2008) форматы:

Устаревшие носители информации:

Объём флеш-карт варьируется в (на середину 2008 г) от 512 МБ до 64 ГБ.

Миниатюрная цифровая камера SiPix рядом со спичечной коробкой

Термин «полупрофессиональный цифровой фотоаппарат» («просьюмер» или «просьюмерка» — калька с англ. prosumer от англ. professional и англ. consumer) обычно употребляется по отношению к псевдозеркальным аппаратам, полузеркалкам и ультразумам, но не является содержательным с технической и потребительской точки зрения.

Термином «профессиональные» обычно называют зеркальные или дальномерные фотоаппараты с кроп-фактором не менее Kf=1,6 и обладающим рядом других отличительных особенностей.

Термин «Камера начального уровня» употребляется по отношению к относительно дешёвым моделям какой-либо серии фотоаппаратов, в какой-либо степени урезанным в функциях.

Термин «Ультразум», как правило, означает «мыльницу» с высокократным зум-объективом. Однако с течением времени кратность объектива, с которой начинается «ультра-», меняется. Так, например, называли 8x зумы при сравнении с 6x.

Вообще, многие пользователи не догадываются, что такое «Зум», считая «чем больше — тем лучше», а между тем это — всего лишь отношение максимального к минимальному фокусных расстояний объектива. И сравнивать фотоаппараты нужно как раз по фокусному расстоянию, от которого зависит «угол обзора» — то есть что войдёт в кадр.

Цифровой зум, Цифровое увеличение, Апсамплинг (англ. Upsampling — буквально, повышение детализации) — функция многих цифровых аппаратов, при использовании которой выбирается центральная часть снимка и увеличивается до размеров стандартного в данном аппарате кадра. Реальное число деталей при этом не увеличивается, и практический смысл в этой функции отсутствует. Однако, величина «цифрового зума» используется, особенно будучи перемноженной с величиной оптического зума (при этом возникают такие крупные значения зума, как 400x или 500x), как важный для покупателя параметр «крутости» камеры. Опытный фотограф использует программы редактирования изображений для получения аналогичного результата, но с гораздо более контролируемым качеством.

Однако «цифровой зум» оказывается полезен при видеосъёмке, если требуется высокая оперативность получения результата и нет времени на обработку изображения.

Мегапиксель — в мегапикселях измеряется одна из важных характеристик цифрового фотоаппарата — разрешение матрицы. Маркетинг, однако, преувеличивает его значение, и «прогресс» в области цифровых фотоаппаратов в сознании покупателя связан с ростом числа мегапикселей.

Примечания

  1. ↑ Практически все аппараты, использующие SD карты, могут использовать и MMC карты.

См. также

Wikimedia Foundation. 2010.

dic.academic.ru

Как работает цифровая камера

Гид астрофотографа > Как работает цифровая камера

Цифровая камера захватывает свет и фокусирует его через объектив на сенсор, сделанный из кремния. Она состоит из сетки мелких фотоэлементов, которые чувствительны к свету. Каждый фотоэлемент называется пикселем, сокращение от  «элемент изображения». Миллионы этих отдельных пикселей находятся в датчике цифровой зеркальной фотокамеры.

Цифровая камера отбирает свет нашего мира, или космического пространства пространственно, тонально и по времени. Пространственная выборка означает, что изображение в камере разбивается прямоугольной сеткой пикселей. Тональная выборка означает, что постоянно меняющиеся тоны яркости в природе разбиты на отдельные дискретные шаги тона. Если есть достаточно выборок, как в пространстве, так и тонально, мы воспринимаем их в качестве верного представления исходной сцены. Время выборки означает, что мы делаем экспозицию заданной длительности.

Наши глаза также воспринимают мир на основе нескольких десятых долей секунды, когда количество света такое же, как в дневное время. В условиях низкой освещенности, экспозиция глаза, или время интегрирования может увеличиться до нескольких секунд. Вот почему мы можем увидеть более подробную информацию с помощью телескопа, если будем смотреть на слабый объект в течение долгого времени.

Глаз является относительно чувствительным детектором. Он может обнаружить один фотон, но эта информация не передается мозгу, потому что она не превышает минимального порога соотношения сигнала к шуму в схеме шумовой фильтрации в зрительной системе. Этот порог обуславливает поступление нескольких фотонов для фиксирования их мозгом. Цифровая камера почти также чувствительна, как глаза, и оба являются гораздо более чувствительными, чем фотопленка, которая требует множество фотонов для обнаружения.

Эти временные выборки с длинными экспозициями, которые действительно делают возможным волшебство цифровой астрофотографии. Истинная мощь цифрового датчика возникает от его способности интегрировать, или собирать, фотоны в течение более длительных периодов времени, чем глаза. Вот почему мы можем записать данные в длинных выдержках, которые невидимы для глаза, даже через большой телескоп.

Каждый светочувствительный элемент на CCD или CMOD чипе состоит из светочувствительной области из кристаллического кремния в фотодиоде, которая поглощает фотоны и высвобождает электроны посредством фотоэффекта. Электроны накапливаются в потенциальной яме в качестве электрического заряда, который накапливается в течение всей экспозиции. Заряд, который генерируется, пропорционален числу фотонов, которые попадают в датчик.

Этот электрический заряд передается и преобразуется в аналоговое напряжение, которое усиливается и затем посылается в аналого-цифровой преобразователь, где оно оцифровывается (превращается в число).

CCD и CMOD датчики работают аналогично друг другу в поглощении фотонов, генерации электронов и их хранении, но отличаются тем, как заряд переносится и где он преобразуется в напряжение. И оба имеют цифровой выход.

Весь файл цифрового изображения это набор чисел, которые представляют значения яркости и местоположения для каждого квадрата в массиве. Эти цифры хранятся в файле, с которым могут работать наши компьютеры.

Не все пиксели чувствительны к свету, только фотодиодные. Процент пикселей, которые является светочувствительными, называется коэффициентом заполнения. Для некоторых датчиков, таких как CMOD, коэффициент заполнения может быть только от  30 до 40 процентов всей площади фотоэлементов. Остальная часть области на CMOD -датчике состоит из электронных схем, таких как усилители и схемы шумоподавления.

Поскольку светочувствительная площадь мала по сравнению с размером пикселей, общая чувствительность чипа снижается. Для увеличения коэффициента заполнения, производители используют микро-линзы, чтобы направить фотоны, которые поражают не чувствительные участки и остаются незамеченными, на фотодиод.

Электроны генерируются тех пор, пока фотоны воздействуют на датчик в течение продолжительности воздействия или интеграции. Они хранятся в потенциальной яме до окончания облучения. Размер ямы называют полной емкостью, и это определяет, сколько электронов может быть собрано, прежде чем яма заполнится и зарегистрирует в полном объеме. В некоторых датчиках после заполнения одной ямы, электроны могут перекинуться на прилегающие ямы, вызывая блюминг, который виден в качестве вертикальных пиков на ярких звездах. Некоторые камеры имеют антиюлюминговые возможности для сокращения или предотвращения этого явления. Большинство DSLR-камер контролируют блюминг очень хорошо, и это не является проблемой для астрофотографии.

Количество электронов, которое может накапливаться в яме, определяет динамический диапазон сенсора и также диапазон яркости от черного до белого, где камера может записывать детали как в слабых, так и в ярких областях сцены. После коррекции шума датчик с большей емкостью обычно имеет больший динамический диапазон. Датчик с низким уровнем шума помогает улучшить динамический диапазон и улучшает детализацию в слабо освещенных местах.

Не каждый фотон, попадающий на детектор, будет зарегистрирован. Количество, которое будет зарегистрировано,  определяется квантовой эффективностью датчика. Квантовая эффективность измеряется в процентах. Если датчик имеет квантовую эффективность в 40 процентов, это означает, что четыре из каждых десяти фотонов, которые попадают на датчик, будут зарегистрированы и преобразованы в электроны. Согласно Roger N. Clarke, квантовый КПД в современных цифровых зеркальных камерах составляет от 20 до 50 процентов, в зависимости от длины волны. Топовые модели астрономических CCD-камер могут иметь квантовую эффективность до 80 процентов и более, хотя это относится к изображениям в градациях серого цвета.

Число электронов, собирающихся в яме, пропорционально числу фотонов, которые зарегистрированы. Электроны в яме затем преобразуется в напряжение. Этот заряд является аналоговым сигналом (непрерывного изменения) и, как правило, очень мал, и должен быть усилен, прежде чем он может быть оцифрован. Выходной усилитель выполняет эту функцию, приводя в соответствие диапазон выходного напряжения датчика к диапазону входного напряжения АЦ преобразователя. АЦ преобразователь преобразует эти данные к виду двоичного числа.

Когда АЦ преобразователь оцифровывает динамический диапазон, он разбивает его в пошаговом режиме. Общее количество шагов задается битной глубиной преобразователя. Большинство камер DSLR работают с 12 битами (4096 шагов) тональной глубины.

Выходной сигнал датчика технически называется аналого-цифрового единицей (ADU) или цифровой номер (DN). Число электронов в ADU определяется коэффициентом усиления системы. Усиление 4 означает, что АЦ преобразователь оцифровывает сигнал так, что каждый ADU соответствует 4 электронам.

Класс экспозиции ISO соответствует классу скорости пленки. Это общая оценка чувствительности к свету. Цифровые датчики камеры имеют только одну чувствительность, но позволяют использовать различные настройки ISO путем изменения коэффициента усиления камеры. Когда усиление в два раза, то число электронов в ADU понижается в 2 раза.

При увеличении ISO в цифровой камере, меньше электронов преобразуются в один ADU. Повышение ISO уменьшает динамический диапазон. При ISO 1600 может быть использовано всего около 1/16 от полной емкости потенциальной ямы датчика. Это может быть полезно для астрономических изображений тусклых предметов, электроны от которых не могут быть собраны другим способом, чтобы заполнить потенциальную яму. Камера только преобразует небольшое количество электронов из этих редких фотонов и сопоставляет этот ограниченный динамический диапазон полной битовой глубине, при этом становится  возможной большая дифференциации между шагами. Это также дает больше шагов, чтобы работать  с этими слабыми данными, когда они растягиваются позже при обработке, чтобы увеличить контраст и видимость.

Для каждого пикселя в датчике, данные яркости, представленные числом от 0 до 4095 для 12-разрядного АЦ конвертера, вместе с координатами местоположения пикселя, хранятся в файле. Эти данные могут временно сохраняются во встроенной буферной памяти камеры, прежде чем записываются в съемной карте памяти камеры.

Этот файл из чисел реконструируется в образ, когда он отображается на мониторе компьютера, или распечатывается.

Это те цифры, которые производятся в процессе оцифровки, с которыми мы можем работать на наших компьютерах. Цифры представлены в виде битов, а представлении «двоичных цифр». Биты используют основание 2 в двоичной системе счисления, где есть только цифры один и ноль, а не на основе 10, где есть цифры от 0 до 9, с чем мы, как правило, работаем. Компьютеры используют двоичные числа, потому что транзисторы, из которых они сделаны, имеют только два состояния включено и выключено, которые представляются цифрами один и ноль соответственно. Все числа могут быть представлены таким образом. Это то, что делает компьютеры настолько мощными при работе с числами, транзисторы это делают очень быстро.

Пространственная выборка

Светочувствительный элемент в матрице камеры соответствуют один к одному с пикселями в цифровом изображении, когда он поступает на выход. Многие люди также называют такие элементы в матрице камеры общим термином "пиксели". Эти элементы расположены в прямоугольном массиве. В Canon 20D, массив 3504 х 2336 пикселей, что в общей сложности 8,2 миллиона пикселей. Эту сетку можно представить как шахматную доску, где каждый квадрат очень мал. Квадраты настолько малы, что, если смотреть с расстояния они заставляют глаз и мозг думать, что изображение является непрерывным. Если вы увеличите любое цифровое изображение до достаточно большого размера, вы сможете увидеть отдельные пиксели. Когда это происходит, мы называем изображение "нечетким".

Цветное изображение на самом деле состоит из трех отдельных каналов, по одному для красного, зеленого и синего цвета. Из-за способа ощущения цвета глазом и мозгом, все цвета радуги могут быть созданы из этих трех основных цветов.

Хотя цифровая камера может записывать 12 бит или 4096 шагов яркости информации, почти все выходные устройства могут отображать только 8 бит или 256 шагов в цветовой канал. Изначальные 12-битные (2 в 12 степени = 4096) входные данные должны быть преобразованы в 8 битные (2 в 8 степени = 256) данные для вывода.

В приведенном выше примере, номинальный пиксель имеет уровень яркости 252 в красном канале, 231 в зеленом канале, и 217 в канале сигнала синего цвета. Яркость каждого цвета может варьироваться от 0 до 255, при 256 общего количества шагов в каждом цветовом канале, когда он отображается на мониторе компьютера, или для вывода на настольном принтере. Ноль означает чистый черный цвет, а 255 указывает чистый белый.

256 цветов каждый из красного, зеленого и синего может показаться не много, но на самом деле это огромное количество, потому что 256 х 256 х 256  - это более 16 миллионов отдельных цветов.

Тональная выборка

Свет и тона в мире изменяются непрерывным образом. После захода Солнца в ясный день небо на западе варьируется от яркого вблизи горизонта до темно-голубого цвета над головой. Эти оттенки синего цвета постоянно меняться. Они плавно переходят от светлого к темному.

Цифровые камеры при измерении света разрывают его непрерывно изменяющиеся сигналы в дискретные шаги, которые могут быть представлены числами (цифры). Они оцифровывают изображение.

256 шагов

64 шага

32 шага

16 шагов

Благодаря способу, который использует наша визуальная система, если мы разделим непрерывные сигналы в достаточном количестве малых дискретных шагов мы можем обмануть глаз, думая, что это непрерывный сигнал, даже если это не так.

В приведенных выше примерах, мы можем увидеть эффект от различного числа тонов, когда мы переходим от черного цвета к белому. Мы можем четко дифференцировать небольшое количество тонов как прерывистость. Но когда число увеличивается, где-то около 128 шагов, они, кажутся непрерывными для нашего восприятия.

Компьютеры и цифры

Поскольку компьютер является очень мощным инструментом при манипулировании с цифрами, мы можем выполнять различные операции над этими цифрами быстро и легко.

Например, контраст определяется как разница в яркости между соседними пикселями. Для контрастности, должна быть разница, так чтобы один пиксель был ярче, а другой пиксель был темнее. Мы можем очень легко увеличить контрастность, просто добавив количество шагов по яркости для яркого пикселя и вычитания числа шагов из значения яркости темного пикселя.

Цвет в изображении представлен значением яркости пикселя в каждом из трех цветовых каналов - красным, зеленом и синем - которые составляют информацию о цвете. Мы можем так же легко изменить цвет пикселя, или группу пикселей, просто изменив число.

Мы можем выполнять другие трюки, такие как увеличение кажущейся резкости изображения за счет увеличения контрастности краевых границ объектов на изображении с помощью процесса, называемого нерезким маскированием.

Представление изображение в виде числа позволяет нам всецело управлять им. И, поскольку изображение является набором чисел, оно может быть дублировано любое количество раз без потери качества.

Линейные или нелинейные данные

Реакция записи цифрового датчика пропорциональна числу фотонов, которые попадают в него. Реакция является линейной. В отличие от фотопленки, цифровые датчики увеличивают записанный сигнал в два раза, когда в два раза увеличивается число фотонов попавших на датчик. Цифровые датчики также являются взаимозаместимыми, как и большинство фотопленок.

Данные, полученные с помощью датчика CMOS в цифровой зеркальной фотокамере и записанные в сыром файле, являются линейными. Линейные данные, как правило, выглядят очень темными по сравнению с нормальным фотографиями (см. рисунок ниже).

Линейная кривая

Человеческое визуальное восприятие яркости лучше описывается логарифмической кривой, чем линейной кривой. Другие человеческие чувства, такие как слух, и даже вкус, также логарифмические. Это означает, что мы лучше различаем разницу на нижнем конце шкалы восприятия, чем мы на высоком конце. Например, мы можем очень легко отличить по весу один фунт и два фунта, когда мы их поднимем. Но у нас возникают трудности при попытке отличить вес в 100 фунтов и 101 фунтов. Тем не менее, разница же, один фунт.

Логарифмическая кривая

Нормальные фотографии на пленке также записаны в нелинейной манере, которая похожа на способ человеческого восприятия. Вот почему мы можем держать слайд к свету, и это выглядит как разумное представления исходной сцены без каких-либо дополнительных модификаций.

Из-за того, что человеческая визуальная система восприятия не работает в линейном  порядке, нелинейный закон должен быть применен при "растяжке" линейных данных из цифровой зеркальной фотокамеры, чтобы тональность фотографий лучше соответствовала нашему визуальному восприятию. Эти нелинейные поправки делаются с помощью программного обеспечения внутри камеры при записи изображения в файл в формате JPEG. Если сырой файл сохраняется в камере, эти нелинейные корректировки делаются в программном обеспечении позже, когда данные открыты в программе обработки изображений.

В примерах изображений, показанных выше, снимок экрана диалога Curves в Photoshop был включен в изображении, чтобы мы могли увидеть сравнение между линейными данными и теми же данными с нелинейной корректировкой. Кривая в темном изображении является линейной, то есть прямая линия. Кривая в светлом изображении показана при растяжке, которая должна быть применена к данным, чтобы сделать их ближе к нашему зрительному восприятию.

Кривая представляет входные и выходные значения яркости пикселей в изображении. Черные в левом нижнем углу, а белые в правом верхнем углу. Серые тона между ними. Когда линия прямая, входной сигнал, который проходит горизонтально вдоль дна, соответствует выходному сигналу, который проходит вертикально вдоль левой стороны.

На вставке показано, что когда прямую тянут вверх, так что ее наклон увеличивается, контрастность этой части кривой и соответствующих тонов в изображении увеличивается. В изображенном выше примере видно, что тон в указанной точке создается намного легче. Все тона в изображении ниже этой точки на кривой, и соответствующих тонов в изображении, растягиваются друг от друга и их контраст увеличился.

Вот почему важно работать с высоко битной глубиной при работе с необработанными изображениями. Из-за сильного натяжения и увеличения контраста, которые необходимы, тоны растягивают. Если у нас есть много тонов и глубина высокого тона позволяет, то их можно гладко перераспределять. Если у нас мало тонов для работы, мы рискуем получить постеризацию и полосы при растяжке данных.

В ярком изображении наклон верхней части кривой уменьшается в светлых областях изображения. Это сжимает тона и уменьшает контраст этих тонов в изображении.

Это то, что позволяет обращаться к этим данным в линейной форме в высокой битной глубине, что делает изображения с цифровых зеркальных камер и CCD такими мощными для создания астрофотографий. Это позволяет нам вычесть фон неба и светового загрязнения. Это дает нам возможность контролировать нелинейные корректировки и растягивать данные. Эти настройки позволяют выявить детали астрономических объектов, которые скрыты глубоко в том, что мы считаем теневыми участками нормальной фотографии.

v-kosmose.com

Цифровой фотоаппарат - это... Что такое Цифровой фотоаппарат?

В этой статье не хватает ссылок на источники информации. Информация должна быть проверяема, иначе она может быть поставлена под сомнение и удалена. Вы можете отредактировать эту статью, добавив ссылки на авторитетные источники. Эта отметка установлена 15 мая 2011.

Цифровой фотоаппарат — это фотоаппарат, в котором для получения изображения используется массив полупроводниковых светочувствительных элементов, называемый матрицей, на которую изображение фокусируется с помощью системы линз объектива.

Полученное изображение, в электронном виде сохраняется в виде файлов в памяти фотоаппарата или дополнительном носителе, вставляемом в фотоаппарат.

Первый цифровой фотоаппарат разработал в 1975 году инженер компании Истмен-Кодак Стивен Сассун (Steven Sasson) 0,1 Мп.

История

Большинство из нас воспринимают цифровой фотоаппарат как нечто само собой разумеющееся. А ведь ещё 15 лет назад такое устройство мог позволить себе только очень состоятельный человек, и было оно скорее признаком роскоши, чем технической необходимостью… Владельцам первых «цифровиков» приходилось нелегко. Нужно было носить с собой пятикилограммовые рюкзаки с аккумуляторами и жестким диском. С тех пор фотокамеры значительно уменьшились в размерах и стали куда более удобными — такими, какими мы их привыкли видеть.

Со времен появления фотоаппарата до выхода в свет его цифрового наследника прошло почти сто лет — именно столько времени потребовалось, чтобы найти способ записи изображений на цифровой носитель. Матрицы фотокамер в том виде, который используется сегодня, появились в конце 60-х годов. Изобретенный Вильямом Бойлем и Джорджем Смитом прибор с зарядовой связью стал первым шагом к современной технике. Однако массовое распространение цифровой фотографии и вытеснение ею пленки началось только в первой половине 2000-х годов.

В 1981 году компания Sony выпустила камеру MAVICA, но первой настоящей цифровой камерой по праву считается Dycam Model 1, известная также под именем Logitech FotoMan FM-1. Отснятые кадры MAVIKA записывала на обычные 3,5-дюймовые дискеты, которые тогда считались едва ли не последним достижением мира техники. Сейчас же найти компьютер, который бы их поддерживал, очень непросто. Единственное, что могло использоваться как в пленочных, так и в цифровых аппаратах — объективы. Принцип их работы при переходе от одного типа хранения информации к другому ничуть не изменился.

Не хватало для создания качественного и простого цифрового фотоаппарата и удобного, ёмкого носителя. Жесткие диски для этих целей не подходили из-за своей ненадежности и больших размеров — ведь предшественники HDD в то время тоже не отличались миниатюрностью. Лишь в 1994 году компания SanDisc создала стандарт CompactFlash, который с некоторыми доработками используется и сегодня. Несмотря на то, что к концу 90-х годов цифровые фотокамеры завоевали сердца большинства покупателей, профессиональные фотографы не стремились переходить на «цифру». Дело в том, что производители до 2001 года сосредотачивались в основном на компактных камерах, не затрагивая профессиональный рынок, для которого требовалось более высокое качество фотоаппаратов. Достигнуть его удалось лишь в 2001 году. Камера Dynax 7 Digital с шестимегапиксельной матрицей, выпущенная компанией Minolta, стала серьёзной заявкой на успех. Она обладала достаточными для опытных фотографов характеристиками и в меру компактными размерами. В этом же году к производству цифровых зеркальных фотокамер присоединились Canon и Nikon, а затем и Pentax. Как видим, на сегодняшний день у каждого крупного производителя фототехники имеется в наличии как минимум несколько зеркалок различных классов (любительские, полу-, профессиональные, полноформатные). Разобраться в этом многообразии зачастую очень непросто. Что же касается компактных камер, они тоже продолжают совершенствоваться — причем не столько по характеристикам матрицы (достигнутого уровня в 10—12 мегапикселей более чем достаточно для фотолюбителя), сколько по удобству использования. Производители оснащают свои устройства дополнительными функциями, превращающими простой фотоаппарат в «разумное» устройство, практически не требующее вмешательства в фотопроцесс со стороны владельца.[1].

Классификация

Грань между фотоаппаратом и видеокамерой размыта: современная видеоаппаратура, как правило, может делать статичные снимки, а фотоаппараты — записывать видеоряд со звуком и выводить его в телевизионном формате. Здесь приведена примерная классификация устройств, чьё основное назначение — фотосъёмка.

Фотоаппараты с несменными объективами

Компактные цифровые фотоаппараты
«Canon PowerShot A60» — компактный цифровой фотоаппарат с оптическим видоискателем «Olympus C-900 zoom» — компактный цифровой фотоаппарат без оптического видоискателя

Пренебрежительно именуется «цифромыльница», однако характеристиками отличается от плёночной «мыльницы». Характеризуется малыми размерами и весом; такой фотоаппарат легко носить с собой постоянно. Визирование по ЖК-экрану, это позволяет точно собрать кадр — удобно для «протокольных» снимков, зачастую доработка в графическом редакторе не нужна вообще. Иногда есть оптический видоискатель, синхронизированный с изменением фокусного расстояния объектива (удобно для съёмки людей, подвижных сцен). Малый физический размер матрицы означает низкую чувствительность или высокий уровень шумов. Также этот тип камер обычно отличает отсутствие или недостаточная гибкость ручных настроек экспозиции.

За исключением самых дешёвых моделей, характеризуются немалыми возможностями в макросъёмке. У многих моделей размер объекта съёмки 30 мм и даже меньше.[2]

Псевдозеркальные цифровые фотоаппараты с несменным объективом
Псевдозеркальный цифровой фотоаппарат «Panasonic FZ-30» с несменным объективом

Псевдозеркальные цифровые фотоаппараты внешним видом напоминают однообъективную зеркальную камеру, а также, помимо цифрового дисплея, оснащены электронным видоискателем. Изображение в видоискателе такого аппарата формируется на отдельном цифровом экране, или на поворачивающемся основном экране. Как правило, имеют резьбу на объективе для присоединения насадок и светофильтров (пример — Konica Minolta серия моделей Z).

Кратность трансфокатора 6× и выше. Довольно высокое качество съёмки, благодаря неплохой диафрагме на «дальнем» конце (например, f/3,5 у Canon PowerShot S3 IS) и стабилизированному объективу. Размеры матрицы варьируются от 1/2,5 видиконных дюймов до Микро 4:3. Портретными возможностями псевдозеркальный цифровой фотоаппарат, даже с маленькой матрицей, не уступает компактным, в первую очередь из-за качественного объектива. Благодаря огромному количеству кнопок по всему корпусу, фотограф может быстро переключить фотоаппарат в нужный режим.

Недостатками большинства ультразумов являются скромные возможности в макросъёмке и высокое фокусное расстояние на «ближнем» конце (например, 36 мм в пересчёте на плёнку у того же «Canon S3 IS»). Современные (начало 2012) ультразумы в широкоугольной съёмке имеют сильную дисторсию, которая корректируется программно. На «дальнем» конце светосила, как правило, невысока. Да и любой фотоаппарат со сменным объективом превзойдёт ультразум по качеству изображения, в первую очередь за счёт большой матрицы.

Полузеркальный цифровой фотоаппарат «Olympus E-10»
«Полузеркальные» фотоаппараты

«Полузеркалка» — жаргонный термин, описывающий класс аппаратов, в которых имеется наводка по фокусировочному экрану через съёмочный объектив, однако нет подъемного зеркала. В таких аппаратах оптическая схема содержит светоделительную призму, которая направляет от 10 до 50 % светового потока на фокусировочный экран, а остальное передается на матрицу. Как правило, нет возможности менять объектив.

Примеры: «Olympus E-10», «Olympus E-20».

Компактные цифровые фотоаппараты с несменным объективом с постоянным фокусным расстоянием

В основном выполнены в стиле «ретро», имеют матрицу больших размеров, многие снабжены оптическим видоискателем, обладают высокими техническими характеристиками беззеркальных фотоаппаратов. Отличаются высокой ценой.

Примеры: «Fujifilm FinePix X100», «Sigma DP1», «Digital Classic Camera Leica M3»

Сверхкомпактные цифровые фотоаппараты
«Canon Digital Ixus 430»

За компактность приходится платить крошечной матрицей (обычно 1/2,5 видиконных дюймов). Чтобы получить приемлемое качество снимков, ставят агрессивное шумоподавление. Также урезают кратность трансфокатора (обычно 3× или 4×), фокусное расстояние на «коротком конце», штативное гнездо, ёмкость аккумулятора. Страдают и возможности макросъёмки. Как правило, нет оптического видоискателя.

Примеры: «Canon Digital IXUS», «Olympus µ»

Фотоаппараты, встроенные в другие устройства

Удобны тем, что устройство всегда с собой. Миниатюрны, как правило, нет механики объектива и собственных органов управления. Служат большей частью для «протокольных» снимков и пересъёмки информации.

Примеры: цифровые фотокамеры камерафонов, интернет-планшетов, автомобильных видеорегистраторов.

Фотоаппараты со сменными объективами

Цифровой однообъективный зеркальный фотоаппарат

Основной инструмент профессионального фотографа — и многих фотолюбителей. Матрица, как правило, «полукадровая» (примерно в 1,5 раза меньше плёночного кадра, по площади — в 2—3 раза). Впрочем, существуют модели с полнокадровой (24×36 мм) и даже среднеформатной матрицей.

На фокусировочном экране располагается так называемый «фазовый автофокус», быстрый и точный. Оптический видоискатель позволяет уловить эмоции объекта съёмки и нажать на кнопку в нужный момент. К тому же этот видоискатель работает через объектив, так что легко контролировать глубину резкости, применять поляризационные и градиентные фильтры. Сменная оптика позволяет приспособить такой фотоаппарат к любому жанру съёмки. Из недостатков — высокая цена, громкий спуск и большие габариты. Затруднена съёмка из нестандартных ракурсов (поэтому фотохудожников часто видят в самых экзотических позах). Видоискатель покрывает не весь кадр (около 85 % в камерах нижнего уровня), поэтому после съёмки практически обязательна доработка фотографий в графическом редакторе. При нажатии на спуск изображение пропадает, поэтому к фотографированию с проводкой надо приспособиться.

Примеры: «Canon EOS-1Ds Mark III», «Nikon D200».

Цифровые дальномерные фотоаппараты

Немногочисленная группа цифровых фотоаппаратов, имеющих, кроме ЖК-дисплея, оптический видоискатель, совмещённый с дальномером. На 2012 год цифровые дальномерные фотоаппараты представлены тремя моделями: «Epson R-D1», «Leica M8» и «Leica M9». Крепление объективов — байонет Leica M. Отличаются высокой ценой, сочетают высокое качество изображения с непревзойдённой оперативностью съёмки (важно для уличной и репортажной фотографии).

Цифровые беззеркальные фотоаппараты

Отсутствие зеркального видоискателя с пентапризмой позволило значительно уменьшить рабочий отрезок камеры и её размеры. Функции TTL-экспонометра и датчика автофокуса переданы светочувствительной матрице. Беззеркальные фотоаппараты получили распространение в конце 2000-х годов, с распространением уменьшенных байонетов наподобие «Микро 4:3».

В свою очередь, беззеркальные цифровые фотоаппараты со сменными объективами делятся на камеры только с ЖК-дисплеем и на псевдозеркальные (с электронным видоискателем). Конструкция некоторых камер позволяет использовать внешний съёмный электронный видоискатель («Olympus PEN E-P2»).

Автофокус медленный контрастный, свойственный «мыльницам». Затруднена ручная фокусировка. Объектив не убирается в корпус, так что габаритов «мыльницы» удаётся добиться лишь с фикс-объективами. Но в целом большая матрица даёт приличное качество изображения. Иногда в погоне за компактностью основного блока производители уменьшают ёмкость аккумулятора до неприемлемых величин.

Примеры: Fujifilm X-Pro1, Sony Alpha NEX-5, Pentax Q, Pentax K-01.

В 2011 году появились первые беззеркальные фотоаппараты, оснащённые матрицей, у которой часть пикселей выделено для автофокусировки методом измерения разности фаз, что существенно увеличило скорость автофокусировки. К таким моделям относятся Nikon 1 V1, Nikon 1 J1, Canon EOS M.

Устройство цифрового фотоаппарата

Светочувствительная матрица

Практически все цифровые фотоаппараты используют флэш-память, но есть также фотоаппараты, где используются оптические диски или дискеты в качестве носителя информации.

Ряд фотоаппаратов имеют небольшой объем встроенной флеш-памяти, которой хватает для 2-30 снимков. Самые распространенные на сегодняшний день (2008) форматы:

Устаревшие носители информации:

Объём флеш-карт варьируется в (на середину 2008 г) от 512 МБ до 64 ГБ.

Миниатюрная цифровая камера «SiPix» рядом со спичечным коробком

Термин «полупрофессиональный цифровой фотоаппарат» («просьюмер» или «просьюмерка» — калька с англ. prosumer от англ. professional и англ. consumer) обычно употребляется по отношению к псевдозеркальным аппаратам, полузеркалкам и ультразумам, но не является содержательным с технической и потребительской точки зрения.

Термином «профессиональные» обычно называют однообъективные зеркальные или дальномерные фотоаппараты с кроп-фактором не более Kf=1,6 и обладающим рядом других отличительных особенностей.

Термин «Камера начального уровня» употребляется по отношению к относительно дешёвым моделям какой-либо серии фотоаппаратов, в какой-либо степени урезанным в функциях.

Термин «ультразум», как правило, означает «мыльницу» с высокократным зум-объективом. Однако с течением времени кратность объектива, с которой начинается «ультра-», меняется. Так, например, называли 8× зумы при сравнении с 6×.

Вообще, многие пользователи не догадываются, что такое «Зум», считая «чем больше — тем лучше», а между тем это — всего лишь отношение максимального к минимальному фокусных расстояний объектива. И сравнивать фотоаппараты нужно как раз по фокусному расстоянию, от которого зависит «угол обзора» — то есть что войдёт в кадр.

Цифровой зум, Цифровое увеличение, Апсемплинг (англ. Upsampling — буквально, повышение детализации) — функция многих цифровых аппаратов, при использовании которой выбирается центральная часть снимка и увеличивается до размеров стандартного в данном аппарате кадра. Реальное число деталей при этом не увеличивается, и практический смысл в этой функции отсутствует. Однако, величина «цифрового зума» используется, особенно будучи перемноженной с величиной оптического зума (при этом возникают такие крупные значения зума, как 400× или 500×), как важный для покупателя параметр «крутости» камеры. Опытный фотограф использует программы редактирования изображений для получения аналогичного результата, но с гораздо более контролируемым качеством.

Однако «цифровой зум» оказывается полезен при видеосъёмке, если требуется высокая оперативность получения результата и нет времени на обработку изображения.

Мегапиксель — в мегапикселях измеряется одна из важных характеристик цифрового фотоаппарата — разрешение матрицы. Маркетинг, однако, преувеличивает его значение, и «прогресс» в области цифровых фотоаппаратов в сознании покупателя связан с ростом числа мегапикселей.

Примечания

См. также

Ссылки

dic.academic.ru

Как появилась первая цифровая камера: masterok

Сейчас цифровые фотоаппараты настолько вошли в нашу жизнь, что ни у кого уже не вызывают удивления. И мало кто задумывается о том, с чего все начиналось. Первая цифровая камера фирмы «Kodak»Модель 1975 года.

Первая цифровая камера Eastman Kodak весила 3.6 кг. Она состояла из нескольких десятков плат и кассетного проигрывателя прикрепленного сбоку. Все это работало от 16 никель-кадмиевых батарей.

Давайте вспомним про это подробнее …

 

В декабре 1975 года инженер фирмы Kodak Стив Сассон (Steve Sasson) изобрел устройство, которое через несколько десятилетий приведет к революции в фотографии — первую цифровую фотокамеру.

 

 

Разрешение видеокамеры составляло всего 0.01 Мегапикселя (10 тыс пикселей, или приблизительно 125 х 80 пикселей). На создание одной черно-белой фотографии, цветные камера делать не умела, уходило 23 секунды, и они хранились на магнитной кассете.

 

 

Один из руководителей того проекта, инженер Стив Сассон (Steve Sasson) вспоминает о нем с теплотой — пускай устройство и не было доведено «до ума», оно стало интересным во многих смыслах — и вскоре благодаря нему Стив официально будет включен в «Зал славы потребительской электроники» (Consumer Electronics Hall of Fame), престижный список людей, внесших наиболее значительный вклад в эволюцию (а может — и революцию), произошедшую в последние годы в этой области.

Устройство собрано на основе элементов камеры Kodak Super 8, с использованием экспериментального прототипа ПЗС-матрицы, которой в наше время оснащаются все цифровые фотоаппараты. Носителем в нем служили, конечно, не флэш-карты, а обычные кассеты с магнитной лентой. Разумеется, ни скоростью работы, ни качеством снимков этот раритет похвастаться не мог: изображение с разверткой в 100 линий записывалось на пленку 23 секунды. Да и удобства оказалось немного — чтобы просмотреть картинку, кассету нужно было поместить в магнитофон, подключенный к компьютеру, который был, в свою очередь, подсоединен к телевизору. Неудивительно, что маркетологи Kodak, опробовавшие новинку на всевозможных фокус-группах, не решились финансировать продолжение проекта.

 

 

Для воспроизведения фотографий они считывались с пленки и выводились на обычный черно-белый телевизор.

 

Но это неважно, ведь даже это несовершенное устройство обладало главным преимуществом цифрового фотоаппарата — оно не нуждалось ни в фотопленке, ни в фотобумаге. Тогда даже это преимущество казалось странным. По словам Сассона, ему задавали вопросы: «Кому вообще может понадобиться смотреть фотографии в телевизоре? Где он будет их хранить? Как ты себе представляешь электронный фотоальбом? Возможно ли сделать технологию удобной и доступной массовому потребителю?»

Увы, тогда изобретатель не нашелся, что ответить скептикам. За него это сделало время.

 

Камера не предназначалась для продаж, да и не представляла интереса для фотографов в таком виде. Не удивительно что первые по-настоящему переносные цифровые камеры появились лишь практически 15 лет спустя в конце 80-х.

 

 

 

  • 1908 Шотландец Алан Арчибальд Кэмпбел Свинтон (Alan Archibald Campbell Swinton) печатает в журнале Nature статью, в которой описывает электронное устройство для регистрации изображения на электронно-лучевой трубке. В дальнейшем эта технология легла в основу телевидения.
  • 1969 Исследователи из Bell Laboratories — Уиллард Бойл (Willard Boyle) и Джордж Смит (George Smith) сформулировали идею прибора с зарядовой связью (ПЗС) для регистрации изображений.
  • 1970 Ученые из Bell Labs создали прототип электронной видеокамеры на основе ПЗС. Первый ПЗС содержал всего семь МОП-элементов.
  • 1972 Компания Texas Instruments запатентовала устройство под названием «Полностью электронное устройство для записи и последующего воспроизведения неподвижных изображений». В качестве чувствительного элемента в нем использовалась ПЗС-матрица, изображения хранились на магнитной ленте, а воспроизведение происходило через телевизор. Данный патент практически полностью описывал структуру цифровой камеры, несмотря на то, что сама камера фактически была аналоговой.
  • 1973 Компания Fairchild (одна из легенд полупроводниковой индустрии) начала промышленный выпуск ПЗС-матриц. Они были чёрно-белыми и имели разрешение всего 100х100 пикселей. В 1974 при помощи такой ПЗС-матрицы и телескопа была получена первая астрономическая электронная фотография. В том же году Гил Амелио (Gil Amelio), также работавший в Bell Labs, разработал техпроцесс производства ПЗС-матриц на стандартном полупроводниковом оборудовании. После этого их распространение пошло намного быстрее.
  • 1975 Инженер Стив Сассон (Steve J. Sasson) работавший в компании Kodak сделал первую работающую камеру на ПЗС-матрице производства Fairchild. Камера весила почти три килограмма и позволяла записывать снимки размером 100×100 пикселей на магнитную кассету (один кадр записывался 23 секунды).
  • 1976 Fairchild выпускает первую коммерческую электронную камеру MV-101, которая была использована на конвейере Procter&Gamble для контроля качества продукции. Это уже была первая, полностью цифровая камера, передававшая изображение в миникомпьютер DEC PDP-8/E по специальному параллельному интерфейсу
  • 1980 Sony представила на рынок первую цветную видеокамеру на основе ПЗС-матрицы (до этого все камеры были чёрно-белыми).
  • 1981 Sony выпускает камеру Mavica (сокращение от Magnetic Video Camera), с которой и принято отсчитывать историю современной цифровой фотографии. Mavica была полноценной зеркальной камерой со сменными объективами и имела разрешение 570×490 пикселей (0,28 Мп) Она записывала отдельные кадры в формате NTSC и поэтому официально она называлась «статической видеокамерой» (Still video camera). Технически, Mavica была продолжением линейки телевизионных камер Sony на основе ПЗС-матриц. Во многом, появление Mavica было переворотом, аналогичным изобретению химического фотопроцесса в начале 19-го века. На смену громоздким телекамерам с электронно-лучевыми трубками пришло компактное устройство на основе твердотельного ПЗС-сенсора. Полученные на ПЗС-матрице изображения сохранялись на специальном гибком магнитном диске в аналоговом видеоформате NTSC. Диск был похож на современную дискету, но имел размер 2 дюйма. На него можно было записать до 50 кадров, а также звуковые комментарии. Диск был перезаписываемый и назывался Video Floppy и Mavipak. Примерно в то же время в канадском университете Калгари была разработана первая полностью цифровая камера под названием All-Sky camera. Она предназначалась для научной фотосъемки, была сделана на основе ПЗС-матрицы Fairchild и выдавала данные в цифровом формате.
  • 1984-1986 По примеру Sony, компании Canon, Nikon, Asahi также начали выпуск электронных видео- и фотокамер. Камеры были аналоговыми, стоили очень дорого и имели разрешение 0,3–0,5 мегапикселей. Картинки в формате видеосигнала писались на магнитные носители (как правило, дискеты). В этом же году Kodak ввёл в обиход термин «мегапиксель», создав промышленный образец CCD-сенсора с разрешением 1,4 Мп.
  • 1988 Компания Fuji, которой и принадлежит право первенства в производстве полноценной цифровой видео-фотокамеры, совместно с Toshiba выпустила камеру Fuji DS-1P, основанную на ПЗС-матрице с разрешением в 0,4 Мп. DS-1P также стала первой камерой, записывавшей изображение в формате NTSC не на магнитный диск, а на сменную карту памяти статического ОЗУ (Static RAM) со встроенной для поддержания целостности данных батарейкой. В том же году Apple совместно с Kodak выпускает первую программу для обработки фотоизображений на компьютере — PhotoMac.
  • 1990 Появилась уже полностью цифровая, коммерческая камера – Dycam Model 1, более известная под как Logitech FotoMan FM-1. Камера была чёрно-белая (256 градаций серого), имела разрешение 376×240 пикселов и 1 мегабайт встроенной оперативной памяти для хранения 32 снимков, встроенную вспышку и возможность подключить камеру к компьютеру.
  • 1991 Kodak, совместно с Nikon, выпускает профессиональный зеркальный цифровой фотоаппарат Kodak DSC100 на основе камеры Nikon F3. Запись происходила на жесткий диск, находящийся в отдельном блоке, весившем около 5 кг.
  • 1994 Apple совершает настоящий маркетинговый прорыв, выпустив Apple QuickTake 100. Фотокамера была выпущена в корпусе, напоминавшем бинокль (популярная в те годы форма для видео-фотокамер) и позволяла хранить во внутренней Flash-памяти восемь снимков размером 640×480 (0,3 Мп) или тридцать два снимка с половинным разрешением 320×200. Подключалась камера к компьютеру с помощью последовательного порта, питалась от трёх батареек формата AA и стоила меньше восьмисот долларов.
  • 1994 На рынке появились первые Flash-карты форматов Compact Flash и SmartMedia, объёмом от 2 до 24 Мбайт.
  • 1995 Выпущены первые потребительские фотоаппараты Apple QuickTake 150, Kodak DC40, Casio QV-11 (первая цифровая фотокамера с LCD-дисплеем и первая же — с поворотным объективом), Sony Cyber-Shot. Началась гонка за снижение цены и приближение качества цифровой фотографии к качеству плёнки.
  • 1996 Приход на рынок компании Olympus, не только с новыми моделями, но и с концепцией комплексного подхода к цифровому фото, основанной на создании локальной пользовательской инфраструктуры: камера + принтер + сканер + персональное хранилище фотоинформации.
  • 1996 Fuji представила первый цифровой минилаб. Технология нового устройства была гибридной – она сочетала в себе лазерные, цифровые и химические процессы. В дальнейшем к производству цифровых минилабов подключились и другие компании, в частности, Noritsu и Konica.
  • 1997 Преодолён символический рубеж в 1 мегапиксель: в начале года выходит камера FujiFilm DS-300 c 1,2-мегапиксельной матрицей, в середине — зеркальная (на основе светоразделяющей призмы) однообъективная камера Olympus C-1400 XL (1,4 мегапиксела).
  • 2000 Выпуск камеры Contax N Digital первой полнокадровой (24х36 мм) камеры с разрешением 6 Мп.
  • 2000-2002 Цифровые камеры становятся доступными для массового потребителя.
  • 2002 Sigma выпускает камеру SD9 c трехслойной матрицей Foveon.
  • 2003 Начало выпуска Canon EOS 300D – первой доступной по цене широкому кругу фотографов зеркальной цифровой фотокамеры со сменными объективами. Благодаря этому факту, а также выпуску аналогичных камер другими производителями, произошло массовое вытеснение плёнки не только из среды непритязательных любителей и профессионалов, но и среди «продвинутых» любителей, до этого относившихся к цифровой фотографии довольно прохладно.
  • 2003 Компаниями Olympus, Kodak и FujiFilm представлен стандарт 4:3, направленный на стандартизацию цифровых зеркальных камер и выпущена фотокамера Olympus Е-1 под этот стандарт.
  • 2005 Начало выпуска Canon EOS 5D – первой доступной по цене (цена менее $3000) камеры с полнокадровым сенсором с разрешением 12.7 Мп

Вследствие совершившейся цифровой миниреволюции особенно выиграли японские компании, в отличие от осторожных «американцев». В частности, Sony и Canon сегодня считаются признанными лидерами рынка, а компания Kodak, являясь одним из ведущих разработчиков технологий для цифровой фотографии, рынок любительской цифровой фототехники практически потеряла. История эта не завершена, она активно продолжается в настоящее время.

[источники]

источники

http://sfw.so/1149040662-kak-poyavilas-pervaya-cifrovaya-kamera.html

http://www.photomanual.ru/articles/history/

http://www.popmech.ru/technologies/10794-pervyy-tsifrovoy-rodom-iz-detstva/

А я вам могу еще напомнить про Самый дорогой фотоаппарат в мире, а так же про удивительный Фотоаппарат с дискетой и конечно же История советского фотоаппарата</p> Оригинал статьи находится на сайте ИнфоГлаз.рф Ссылка на статью, с которой сделана эта копия - http://infoglaz.ru/?p=57315

masterok.livejournal.com

Выбор цифровой камеры

Часть 1. Цифровая фотография. Основы 

Глава 2. Выбираем цифровую камеру. 

При выборе цифровой камеры нужно руководствоваться многими факторами.

В любом случае, если вы сильно заинтересованы в фотографии и интересуетесь подобной литературой, то скорее всего тот фотоаппарат, который вы выберите не станет последней покупкой. Мир прогресса таков, что неважно какими характеристиками или способностями обладает ваша камера – через год, а то и меньше в продаже появятся модели , которые обладают куда большими возможностями.

Не имеет значения, к какому типу людей вы относитесь: фотолюбитель, ветеран, новичок или вовсе человек, который никогда не прикасался к фотокамере – эта глава поможет вам при выборе вашей камеры. Здесь вы встретите некоторые термины, которые могут быть вам незнакомы, например: мегапиксели, разрешение, зуммирование. Ниже будет дано для каждого чёткое определение и полное объяснение.

Перед выбором камеры, вам нужно, прежде всего, спросить себя: Для чего же мне необходим фотоаппарат? Спросите это у себя, даже если обладаете неисчерпаемым запасом денег. Фотография — это такая область деятельности, где очень дорогое оборудование не всегда является самым лучшим. Вы можете купить очень дорогую камеру, но так никогда и не разобраться с её использованием. До тех пор, пока вы не разберётесь – что же вам нужно, у вас всегда есть риск купить камеру с кучей ненужных функций, которые усложняют даже самые простые и элементарные вещи.

С другой стороны не думайте, что купив самую дешёвую камеру, вы сможете привыкнуть к её недостаткам. Так вот, задайте же себе следующие вопросы:

1. Собираетесь ли вы заниматься редактированием изображений?

2. Нужно ли вам высокое разрешение?

3. Нравиться ли вам экспериментировать с фотографией или достаточно снимать обычные семейные ракурсы?

4. Любите ли вы делать огромное количество снимков?

5. Как быстро вам нужны сделанные фотографии?

6. Имеет ли значение размер?

7. Является ли для вас фотография способом творческого выражения?

8. Может быть вам стоит просто добавить объективы или другие аксессуары к камере, которая у вас уже есть?

Многие фотографы очень мало, либо совсем, не уделяют внимания редактированию фотографий. Определитесь, что вам нужно: хорошие фотографии с чётким изображением, для газеты или интернет-магазина или художественные произведения? Если так, то вам потребуется высококачественная профессиональная камера с дополнительной наводкой на резкость и техническими возможностями для выполнения редактирования снимков. Базовая или среднего уровня камера, вполне справится с этой работой.

Обратим своё внимание на разрешение цифровой камеры. Некоторые приложения-фоторедакторы требуют высокого разрешения. Всем, кто собирается получать большие отпечатки или вырезать небольшие кусочки изображений, потребуется относительно высокое разрешение, примерно от 3 до 7 мегапикселей или больше. Тем не менее, если создание больших отпечатков и мелких фрагментов – это только часть вашей работы, вам лучше использовать цифровую камеру. В данном случае приобретайте модель с максимально доступным по цене разрешением.

Если вы увлечённый фотографированием человек – убедитесь, что в вашей камере есть функции ручной настройки, о которых будет рассказано позже. Вам потребуется достаточно мощное свойство изменения масштаба изображения, называемое зуммированием (zoom), а также достаточно объёмное запоминающее устройство. Всё это мы рассмотрим детально позже.

Выбор камеры скажется и на том, как скоро вы можете увидеть сделанные снимки и, соответственно, работать с ними. Камеры с USB-каналом передачи данных или сменной картой памяти, передадут изображение на ваш компьютер на очень высокой скорости. Для камеры со старым последовательным портом, потребуется около минуты на каждый снимок.

В рамках определённой категории фотоаппаратов вы найдёте огромное множество производителей и моделей. Для того, что бы сузить рамки выбора – задайте себе ещё несколько вопросов:

Какое значение для вас имеет размер? Некоторые промежуточные и усложнённые модели достаточно малы и могут поместиться в карман. Другие, примерно с такими же характеристиками, настолько громоздки, что для них потребуется сумка, может быть даже с колёсиками. Конечно, у этих аппаратов есть преимущественные различия, как то: тип запоминающего устройства, диапазон зуммирования, эти параметры заставляют задуматься профессионального фотографа.

В обычной, дешёвой, так сказать, камере, вы снимаете через объектив, а смотрите на объект съёмки через видоискатель, который имеет своё собственное отверстие. Из-за того, что отверстия объектива и видоискателя разные, находятся на разном уровне и видят объект каждый по своему – вы снимаете не то, что видите. В зеркальном фотоаппарате вы видите именно то, что снимаете. За объективом находится зеркало, которое отражает свет от объекта в видоискатель. Когда происходит съёмка, зеркало поднимается и свет от объекта попадает на плёнку и на сенсор.

Если фотография для вас является способом творческого самовыражения, то найдите себе камеру с самым удобным ручным управлением, точным видоискателем и дополнительными возможностями. В этом вам поможет мощная или полупрофессиональная модель. При этом следует знать, что недостаточно просто выяснить, представляет ли камера возможность ручного управления выдержкой, диафрагмой и фокусировкой. Выясните: придётся ли вам работать с трёхуровневым меню для доступа к определённым функциям, либо для этого нужно просто нажать пару кнопок. Также есть возможность избежать покупки дорогой камеры, лишь добавив объективы и другие аксессуары к обычной фотокамере. Список аксессуаров достаточно велик: электронная вспышка, фильтры, приспособления для макросъёмки, штативы и прочее. Не забудьте проверить это оборудование на совместимость, прежде чем покупать.

Теперь разберёмся с категориями выбора цифровых камер.

Многие цифровые камеры можно квалифицировать по определённым категориям.

Базовые модели. Всё, что сложнее Web-камеры и стоит около сотни долларов, подпадает под эту категорию, так называемых: “наведи и снимай”. Большинство таких моделей имеют разрешение около 1024*768 или 1280*960 (около 0.8 – 1.0 мегапикселей), хотя встречаются ещё и 640*480, также они имеют встроенную вспышку, объектив с фиксированным фокусным расстоянием без зума, либо объектив с весьма ограниченным зумом. Фокусирование может быть фиксированным или ограниченным, а что касается ручного управления, то оно либо доступно в минимальном объёме, либо отсутствует. Здесь, что называется, нажал кнопку и вся работа будет сделана за вас.

Модели среднего уровня удовлетворяют требования большого числа потребителей. Диапазон разрешения 2-4 мегапикселя, имеют зум-объективы и, конечно, возможность ручного управления. Стоимость их гораздо, но не запредельно, дороже обычных, так как эти камеры предоставляют максимум того, что возможно сделать с помощью цифровой камеры.

Мощные модели являют собой аппараты с разрешением от 4-7 мегапикселей, большим диапазоном изменения фокусного расстояния, большим кол-вом возможностей ручного управления и прочими характеристиками. Однако же эти камеры более сложны в управлении и могут сбить вас с толку. Вы обнаружите, что они буквально усеяны огромным количеством многофункциональных кнопок и регуляторов, имеют множество режимов, более десятка менюшек и толстенные инструкции по использованию. Если вам нужна именно такая камера, и вы не пугаетесь сложностей в обращении с аппаратурой, подготовьтесь потратить уйму времени на её изучение.

Полупрфессиональные модели стоят от 1000 долларов, но такие аппараты имеют пару миллионов пикселей разрешения, оптика, такая, что вы можете фотографировать песок на луне и т.д. Цена эта не фантастическая, если принять во внимание то, что именно столько вам нужно было бы потратить на объективы и другие прибамбасы с такими характеристиками: высокоскоростной привод, возможность работы с несколькими вспышками, что бы ими увесить обычную камеру.

Если вы решили всё же приобрести профессиональную модель, можно вам только позавидовать – обладателю всех преимуществ и характеристик этого монстра. Всех преимуществ устанешь перечислять: сменные объективы, приспособления для макросъёмки, точное фокусирование через объектив…

Определимся с выбором технических характеристик.

Как только вы определитесь с категорией камеры, вам необходимо выбрать определённые свойства, для того, что бы получать те изображения, которые вы хотите. Объектив, разрешение, тип запоминающей карты, выдержка, тип видоискателя – этот набор возможностей вам нужно рассмотреть как можно более тщательно.

Итак, объектив – это глаз вашей камеры, который захватывает и фокусирует свет, обуславливает качество изображения, а также определяет, что именно вы способны с помощью неё снять. Сразу надо сказать, что никакой разницы в том из чего сделан объектив – оптическое стекло или пластик – нет. Что действительно важно – это качество объектива, количество света, которое он может пропускать, диапазон фокусных расстояний, степень увеличения.

Диафрагма объектива – это размер отверстия, через которое свет проходит на сенсор. Относительно возможности увеличения или изменения фокусного расстояния объектива. Более открытая диафрагма пропускает больше света, позволяя вам делать снимки в затемнённых условиях. Закрытая диафрагма ограничивает количество света, который может достичь сенсора камеры. Она незаменима при очень ярком свете. Хороший объектив имеет хороший диапазон изменения раскрытия диафрагмы (диафрагменное число), для того, что бы можно было производить съёмку в любых условиях.

Кое-что о диафрагменном числе: это число является скорее знаменателем дроби, чем единицей измерения. Открытие f2 больше, чем f4, которое в свою очередь больше f8, так же как ? больше ?, которая больше 1/8. При автоматическом режиме съёмки, о нём даже не приходиться задумываться, однако на диафрагму нужно обратить внимание, и в дальнейшем мы разберём её подробнее. Что вам нужно знать на данном этапе, так это то, что максимальная диафрагма f2 (быстрая диафрагма), f8 (медленная).

Ручная настройка выдержки. Все объективы цифровых камер с различной диафрагмой, автоматически настраивает выдержку при съёмке. Серьёзным фотографам может понадобиться опция, допускающая ручную настройку выдержки для получения специальных эффектов или более резкого изображения. Такой элемент управления встречается в нескольких видах:

1. Плюс/минус или передержка/недодержка. При использовании этих элементов вы можете немного отрегулировать выдержку в большую или меньшую сторону, чем то время, что рекомендует встроенный экспонометр. Далее мы будем рассматривать — как использовать такой тип управления для того, что бы компенсировать недодержанные/передержанные фотографии.

2. Приоритет диафрагмы/приоритет выдержки. С помощью этого режима вы можете задавать величину диафрагмы, которая вам нужна, а камера подберёт к ней необходимую выдержку. Либо вы можете выбрать выдержку, а камера выберет оптимальную диафрагму. Как будет изучено позже – эти элементы управления могут эффективно использоваться для обеспечения того, что камера выбрала точную комбинацию диафрагмы и скорости затвора при съёмке в условиях плохого освещения, либо фотографировании объекта в движении.

3. Полностью ручное управление. С помощью этой опции вы можете устанавливать любую требуемую комбинацию выдержки и диафрагмы и таким образом получать абсолютный контроль над выдержкой фотокамеры. Во многих случаях вам совсем не нужно то, что камера считает идеальной выдержкой. Ручное управление позволяет вам делать очень тёмные или очень светлые снимки, которые выглядят более художественно.

Зуммирование (увеличение) объектива удобно для увеличения или уменьшения изображения. Этот инструмент особенно полезен при съёмке спортивных мероприятий или сценических действий, либо в тех случаях, когда ваше передвижение ограничено. При оптическом увеличении для изменения величины объекта меняются отношения между отдельными линзами. Поскольку линзы объектива могут быть точно настроены, оптическое увеличение создаёт изображение с оптимальной резкостью. Некоторые камеры имеют также цифровое увеличение, при котором зуммирование осуществляется путём увеличения центральной части зафиксированного изображения. Цифровое увеличение даёт меньшую резкость, чем оптическое.

Если вам предстоит делать много фотографий небольших объектов или крупных планов, убедитесь, что камера, которую вы выбрали, имеет режим макросъёмки. Производители вкладывают различный смысл в слово “макро”, и в зависимости от модели минимальная дистанция фокусировки в этом режиме колеблется от 2.5 до 30 см. Чем ближе вы к объекту, тем важнее становится использование качественного жидкокристаллического дисплея. Дешёвые камеры, имеющие объектив с постоянным фокусным расстоянием, могут не располагать механизмом фокусировки, но, всё же, они дают неплохое по резкости изображение от 1м до бесконечности, а в некоторых случаях даже от 40-60 см. Камеры, которые имеют механизм автофокусировки обеспечивают точную наводку на резкость на любой дистанции, они также могут выделить сюжетно-важную часть, оставив всё остальное нерезким.

Фотограф всегда может дополнить свою камеру дополнительными аксессуарами, прикрепляемыми к объективу, такими, как фильтры, приспособления для специальных эффектов, линзы для макросъёмки, светозащитная бленда объектива и так далее. Если вам требуются такие приспособления – найдите цифровую камеру с объективом, имеющим возможность прикрепления дополнительных приспособлений.

Разрешение изображения, доступное вашей камере, определяет насколько резким будет ваше изображение. Разрешение камеры получают умножением количества пикселей по высоте, из которых состоит сенсор вашей камеры. Количество может быть указано не совсем точно, поскольку некоторые камеры выдают конечное изображение после обработки первичного сигнала с матрицы. Такой математический процесс пересчёта называют интерполяцией. Возможно, вы захотите сами выбрать необходимое разрешение. Например, если вы делаете большое количество снимков для WEB-страниц, вам достаточно низкое разрешение, типа 640*480 пикселей, что позволяет увеличить скорость съёмки и упростить масштабирование в редакторе изображений.

Варианты форматов сохранения изображений, доступные в вашей камере, также могут влиять на резкость ваших фотографий. Для сохранения изображений на карте памяти или компьютере существую различные форматы файлов. Цифровые камеры обычно сохраняют изображение в сжатом формате, известном как JPEG. Формат JPEG обеспечивает меньший размер путём отбрасывания некоторой информации, ненужной в большинстве случаев. Этот формат имеет несколько уровней качества и, естественно, приобретайте камеру, которая позволит сохранение изображение в формате JPEG с наивысшим качеством. Формат без сжатия – TIFF.

Запоминающие устройства, в принципе, имеют все цифровые камеры. Здесь всё просто: чем больше снимков вам нужно сделать за раз – тем больше памяти вам нужно. Цветные изображения с высоким разрешением занимают больше места, чем снимки с низким разрешением, либо чёрно-белые.

Стоит упомянуть и об экспозиции. Экспозиция определяется количеством времени, в течение которого сенсор освещается светом и интенсивностью света. Все цифровые камеры располагают более или менее удобными в использовании функциями автоматической экспозиции для создания фотоснимков со вспышкой и без неё. Для того что бы ваша камера делала хорошие снимки при плохом освещении вам потребуется более чувствительный сенсор. Она измеряется в единицах ISO (ISO 100, ISO 200, ISO 400). Чем выше число, тем чувствительнее сенсор. При выборе камеры, обратите внимание на установленное значение ISO и на то, может ли оно быть изменено.

Вспышка. Некоторые камеры имеют фиксированный диапазон вспышки и ограничивают расстояние до 0.6-5м. Другие камеры имеют специальные настройки, в которых вы можете находиться довольно далеко от объекта, либо широкоугольным объективом, когда вы находитесь близко к объекту.

Видоискатели. Фактически все цифровые камеры имеют видоискатель, который позволяет быстро кадрировать изображение, и дисплей для более точного построения композиции и предварительного просмотра фотографии. Следует обратить внимание на то, насколько видимым является изображение на жидкокристаллическом дисплее при дневном свете, а также его размер и количество энергии, необходимое для его работы. Некоторые из них потребляют столько энергии, что если камера включена длительное время, батарейки выдыхаются после полдюжины снимков. Некоторые камеры позволяют включать дисплей только тогда, когда вам это потребуется.

В большинстве случаев вы будете использовать оптический видоискатель вашей камеры. Местоположение видоискателя при этом очень важно. Чаще всего окошко видоискателя расположено на некотором расстоянии от объектива и показывает изображение немного не так, как оно в действительности выглядит. Часть изображение может быть срезано. При расположении видоискателя максимально близко к объективу возможность обрезки резко снижается. Многие оптические видоискатели обладают выравниванием (компенсация параллакса), которое чётко показывает границы вашего изображения.

 

Если вы носите очки, убедитесь, что у вашего аппарата есть встроенная диоптрийная коррекция, которая может быть использована при настройке изображения близорукими и дальнозоркими. На этом урок «Выбор цифровой камеры» закончен. На следующем уроке мы рассмотрим Выбор сканера.

 

Самый гламурный и красивый телефон для девушек. Телефоны Louis Vuitton и другие можно приобрести по приемлемым ценам на mobila-copy.

art-assorty.ru

Как работает цифровая камера

Гид астрофотографа > Как работает цифровая камера

Цифровая камера захватывает свет и фокусирует его через объектив на сенсор, сделанный из кремния. Она состоит из сетки мелких фотоэлементов, которые чувствительны к свету. Каждый фотоэлемент называется пикселем, сокращение от  «элемент изображения». Миллионы этих отдельных пикселей находятся в датчике цифровой зеркальной фотокамеры.

Цифровая камера отбирает свет нашего мира, или космического пространства пространственно, тонально и по времени. Пространственная выборка означает, что изображение в камере разбивается прямоугольной сеткой пикселей. Тональная выборка означает, что постоянно меняющиеся тоны яркости в природе разбиты на отдельные дискретные шаги тона. Если есть достаточно выборок, как в пространстве, так и тонально, мы воспринимаем их в качестве верного представления исходной сцены. Время выборки означает, что мы делаем экспозицию заданной длительности.

Наши глаза также воспринимают мир на основе нескольких десятых долей секунды, когда количество света такое же, как в дневное время. В условиях низкой освещенности, экспозиция глаза, или время интегрирования может увеличиться до нескольких секунд. Вот почему мы можем увидеть более подробную информацию с помощью телескопа, если будем смотреть на слабый объект в течение долгого времени.

Глаз является относительно чувствительным детектором. Он может обнаружить один фотон, но эта информация не передается мозгу, потому что она не превышает минимального порога соотношения сигнала к шуму в схеме шумовой фильтрации в зрительной системе. Этот порог обуславливает поступление нескольких фотонов для фиксирования их мозгом. Цифровая камера почти также чувствительна, как глаза, и оба являются гораздо более чувствительными, чем фотопленка, которая требует множество фотонов для обнаружения.

Эти временные выборки с длинными экспозициями, которые действительно делают возможным волшебство цифровой астрофотографии. Истинная мощь цифрового датчика возникает от его способности интегрировать, или собирать, фотоны в течение более длительных периодов времени, чем глаза. Вот почему мы можем записать данные в длинных выдержках, которые невидимы для глаза, даже через большой телескоп.

Каждый светочувствительный элемент на CCD или CMOD чипе состоит из светочувствительной области из кристаллического кремния в фотодиоде, которая поглощает фотоны и высвобождает электроны посредством фотоэффекта. Электроны накапливаются в потенциальной яме в качестве электрического заряда, который накапливается в течение всей экспозиции. Заряд, который генерируется, пропорционален числу фотонов, которые попадают в датчик.

Этот электрический заряд передается и преобразуется в аналоговое напряжение, которое усиливается и затем посылается в аналого-цифровой преобразователь, где оно оцифровывается (превращается в число).

CCD и CMOD датчики работают аналогично друг другу в поглощении фотонов, генерации электронов и их хранении, но отличаются тем, как заряд переносится и где он преобразуется в напряжение. И оба имеют цифровой выход.

Весь файл цифрового изображения это набор чисел, которые представляют значения яркости и местоположения для каждого квадрата в массиве. Эти цифры хранятся в файле, с которым могут работать наши компьютеры.

Не все пиксели чувствительны к свету, только фотодиодные. Процент пикселей, которые является светочувствительными, называется коэффициентом заполнения. Для некоторых датчиков, таких как CMOD, коэффициент заполнения может быть только от  30 до 40 процентов всей площади фотоэлементов. Остальная часть области на CMOD -датчике состоит из электронных схем, таких как усилители и схемы шумоподавления.

Поскольку светочувствительная площадь мала по сравнению с размером пикселей, общая чувствительность чипа снижается. Для увеличения коэффициента заполнения, производители используют микро-линзы, чтобы направить фотоны, которые поражают не чувствительные участки и остаются незамеченными, на фотодиод.

Электроны генерируются тех пор, пока фотоны воздействуют на датчик в течение продолжительности воздействия или интеграции. Они хранятся в потенциальной яме до окончания облучения. Размер ямы называют полной емкостью, и это определяет, сколько электронов может быть собрано, прежде чем яма заполнится и зарегистрирует в полном объеме. В некоторых датчиках после заполнения одной ямы, электроны могут перекинуться на прилегающие ямы, вызывая блюминг, который виден в качестве вертикальных пиков на ярких звездах. Некоторые камеры имеют антиюлюминговые возможности для сокращения или предотвращения этого явления. Большинство DSLR-камер контролируют блюминг очень хорошо, и это не является проблемой для астрофотографии.

Количество электронов, которое может накапливаться в яме, определяет динамический диапазон сенсора и также диапазон яркости от черного до белого, где камера может записывать детали как в слабых, так и в ярких областях сцены. После коррекции шума датчик с большей емкостью обычно имеет больший динамический диапазон. Датчик с низким уровнем шума помогает улучшить динамический диапазон и улучшает детализацию в слабо освещенных местах.

Не каждый фотон, попадающий на детектор, будет зарегистрирован. Количество, которое будет зарегистрировано,  определяется квантовой эффективностью датчика. Квантовая эффективность измеряется в процентах. Если датчик имеет квантовую эффективность в 40 процентов, это означает, что четыре из каждых десяти фотонов, которые попадают на датчик, будут зарегистрированы и преобразованы в электроны. Согласно Roger N. Clarke, квантовый КПД в современных цифровых зеркальных камерах составляет от 20 до 50 процентов, в зависимости от длины волны. Топовые модели астрономических CCD-камер могут иметь квантовую эффективность до 80 процентов и более, хотя это относится к изображениям в градациях серого цвета.

Число электронов, собирающихся в яме, пропорционально числу фотонов, которые зарегистрированы. Электроны в яме затем преобразуется в напряжение. Этот заряд является аналоговым сигналом (непрерывного изменения) и, как правило, очень мал, и должен быть усилен, прежде чем он может быть оцифрован. Выходной усилитель выполняет эту функцию, приводя в соответствие диапазон выходного напряжения датчика к диапазону входного напряжения АЦ преобразователя. АЦ преобразователь преобразует эти данные к виду двоичного числа.

Когда АЦ преобразователь оцифровывает динамический диапазон, он разбивает его в пошаговом режиме. Общее количество шагов задается битной глубиной преобразователя. Большинство камер DSLR работают с 12 битами (4096 шагов) тональной глубины.

Выходной сигнал датчика технически называется аналого-цифрового единицей (ADU) или цифровой номер (DN). Число электронов в ADU определяется коэффициентом усиления системы. Усиление 4 означает, что АЦ преобразователь оцифровывает сигнал так, что каждый ADU соответствует 4 электронам.

Класс экспозиции ISO соответствует классу скорости пленки. Это общая оценка чувствительности к свету. Цифровые датчики камеры имеют только одну чувствительность, но позволяют использовать различные настройки ISO путем изменения коэффициента усиления камеры. Когда усиление в два раза, то число электронов в ADU понижается в 2 раза.

При увеличении ISO в цифровой камере, меньше электронов преобразуются в один ADU. Повышение ISO уменьшает динамический диапазон. При ISO 1600 может быть использовано всего около 1/16 от полной емкости потенциальной ямы датчика. Это может быть полезно для астрономических изображений тусклых предметов, электроны от которых не могут быть собраны другим способом, чтобы заполнить потенциальную яму. Камера только преобразует небольшое количество электронов из этих редких фотонов и сопоставляет этот ограниченный динамический диапазон полной битовой глубине, при этом становится  возможной большая дифференциации между шагами. Это также дает больше шагов, чтобы работать  с этими слабыми данными, когда они растягиваются позже при обработке, чтобы увеличить контраст и видимость.

Для каждого пикселя в датчике, данные яркости, представленные числом от 0 до 4095 для 12-разрядного АЦ конвертера, вместе с координатами местоположения пикселя, хранятся в файле. Эти данные могут временно сохраняются во встроенной буферной памяти камеры, прежде чем записываются в съемной карте памяти камеры.

Этот файл из чисел реконструируется в образ, когда он отображается на мониторе компьютера, или распечатывается.

Это те цифры, которые производятся в процессе оцифровки, с которыми мы можем работать на наших компьютерах. Цифры представлены в виде битов, а представлении «двоичных цифр». Биты используют основание 2 в двоичной системе счисления, где есть только цифры один и ноль, а не на основе 10, где есть цифры от 0 до 9, с чем мы, как правило, работаем. Компьютеры используют двоичные числа, потому что транзисторы, из которых они сделаны, имеют только два состояния включено и выключено, которые представляются цифрами один и ноль соответственно. Все числа могут быть представлены таким образом. Это то, что делает компьютеры настолько мощными при работе с числами, транзисторы это делают очень быстро.

Пространственная выборка

Светочувствительный элемент в матрице камеры соответствуют один к одному с пикселями в цифровом изображении, когда он поступает на выход. Многие люди также называют такие элементы в матрице камеры общим термином "пиксели". Эти элементы расположены в прямоугольном массиве. В Canon 20D, массив 3504 х 2336 пикселей, что в общей сложности 8,2 миллиона пикселей. Эту сетку можно представить как шахматную доску, где каждый квадрат очень мал. Квадраты настолько малы, что, если смотреть с расстояния они заставляют глаз и мозг думать, что изображение является непрерывным. Если вы увеличите любое цифровое изображение до достаточно большого размера, вы сможете увидеть отдельные пиксели. Когда это происходит, мы называем изображение "нечетким".

Цветное изображение на самом деле состоит из трех отдельных каналов, по одному для красного, зеленого и синего цвета. Из-за способа ощущения цвета глазом и мозгом, все цвета радуги могут быть созданы из этих трех основных цветов.

Хотя цифровая камера может записывать 12 бит или 4096 шагов яркости информации, почти все выходные устройства могут отображать только 8 бит или 256 шагов в цветовой канал. Изначальные 12-битные (2 в 12 степени = 4096) входные данные должны быть преобразованы в 8 битные (2 в 8 степени = 256) данные для вывода.

В приведенном выше примере, номинальный пиксель имеет уровень яркости 252 в красном канале, 231 в зеленом канале, и 217 в канале сигнала синего цвета. Яркость каждого цвета может варьироваться от 0 до 255, при 256 общего количества шагов в каждом цветовом канале, когда он отображается на мониторе компьютера, или для вывода на настольном принтере. Ноль означает чистый черный цвет, а 255 указывает чистый белый.

256 цветов каждый из красного, зеленого и синего может показаться не много, но на самом деле это огромное количество, потому что 256 х 256 х 256  - это более 16 миллионов отдельных цветов.

Тональная выборка

Свет и тона в мире изменяются непрерывным образом. После захода Солнца в ясный день небо на западе варьируется от яркого вблизи горизонта до темно-голубого цвета над головой. Эти оттенки синего цвета постоянно меняться. Они плавно переходят от светлого к темному.

Цифровые камеры при измерении света разрывают его непрерывно изменяющиеся сигналы в дискретные шаги, которые могут быть представлены числами (цифры). Они оцифровывают изображение.

256 шагов

64 шага

32 шага

16 шагов

Благодаря способу, который использует наша визуальная система, если мы разделим непрерывные сигналы в достаточном количестве малых дискретных шагов мы можем обмануть глаз, думая, что это непрерывный сигнал, даже если это не так.

В приведенных выше примерах, мы можем увидеть эффект от различного числа тонов, когда мы переходим от черного цвета к белому. Мы можем четко дифференцировать небольшое количество тонов как прерывистость. Но когда число увеличивается, где-то около 128 шагов, они, кажутся непрерывными для нашего восприятия.

Компьютеры и цифры

Поскольку компьютер является очень мощным инструментом при манипулировании с цифрами, мы можем выполнять различные операции над этими цифрами быстро и легко.

Например, контраст определяется как разница в яркости между соседними пикселями. Для контрастности, должна быть разница, так чтобы один пиксель был ярче, а другой пиксель был темнее. Мы можем очень легко увеличить контрастность, просто добавив количество шагов по яркости для яркого пикселя и вычитания числа шагов из значения яркости темного пикселя.

Цвет в изображении представлен значением яркости пикселя в каждом из трех цветовых каналов - красным, зеленом и синем - которые составляют информацию о цвете. Мы можем так же легко изменить цвет пикселя, или группу пикселей, просто изменив число.

Мы можем выполнять другие трюки, такие как увеличение кажущейся резкости изображения за счет увеличения контрастности краевых границ объектов на изображении с помощью процесса, называемого нерезким маскированием.

Представление изображение в виде числа позволяет нам всецело управлять им. И, поскольку изображение является набором чисел, оно может быть дублировано любое количество раз без потери качества.

Линейные или нелинейные данные

Реакция записи цифрового датчика пропорциональна числу фотонов, которые попадают в него. Реакция является линейной. В отличие от фотопленки, цифровые датчики увеличивают записанный сигнал в два раза, когда в два раза увеличивается число фотонов попавших на датчик. Цифровые датчики также являются взаимозаместимыми, как и большинство фотопленок.

Данные, полученные с помощью датчика CMOS в цифровой зеркальной фотокамере и записанные в сыром файле, являются линейными. Линейные данные, как правило, выглядят очень темными по сравнению с нормальным фотографиями (см. рисунок ниже).

Линейная кривая

Человеческое визуальное восприятие яркости лучше описывается логарифмической кривой, чем линейной кривой. Другие человеческие чувства, такие как слух, и даже вкус, также логарифмические. Это означает, что мы лучше различаем разницу на нижнем конце шкалы восприятия, чем мы на высоком конце. Например, мы можем очень легко отличить по весу один фунт и два фунта, когда мы их поднимем. Но у нас возникают трудности при попытке отличить вес в 100 фунтов и 101 фунтов. Тем не менее, разница же, один фунт.

Логарифмическая кривая

Нормальные фотографии на пленке также записаны в нелинейной манере, которая похожа на способ человеческого восприятия. Вот почему мы можем держать слайд к свету, и это выглядит как разумное представления исходной сцены без каких-либо дополнительных модификаций.

Из-за того, что человеческая визуальная система восприятия не работает в линейном  порядке, нелинейный закон должен быть применен при "растяжке" линейных данных из цифровой зеркальной фотокамеры, чтобы тональность фотографий лучше соответствовала нашему визуальному восприятию. Эти нелинейные поправки делаются с помощью программного обеспечения внутри камеры при записи изображения в файл в формате JPEG. Если сырой файл сохраняется в камере, эти нелинейные корректировки делаются в программном обеспечении позже, когда данные открыты в программе обработки изображений.

В примерах изображений, показанных выше, снимок экрана диалога Curves в Photoshop был включен в изображении, чтобы мы могли увидеть сравнение между линейными данными и теми же данными с нелинейной корректировкой. Кривая в темном изображении является линейной, то есть прямая линия. Кривая в светлом изображении показана при растяжке, которая должна быть применена к данным, чтобы сделать их ближе к нашему зрительному восприятию.

Кривая представляет входные и выходные значения яркости пикселей в изображении. Черные в левом нижнем углу, а белые в правом верхнем углу. Серые тона между ними. Когда линия прямая, входной сигнал, который проходит горизонтально вдоль дна, соответствует выходному сигналу, который проходит вертикально вдоль левой стороны.

На вставке показано, что когда прямую тянут вверх, так что ее наклон увеличивается, контрастность этой части кривой и соответствующих тонов в изображении увеличивается. В изображенном выше примере видно, что тон в указанной точке создается намного легче. Все тона в изображении ниже этой точки на кривой, и соответствующих тонов в изображении, растягиваются друг от друга и их контраст увеличился.

Вот почему важно работать с высоко битной глубиной при работе с необработанными изображениями. Из-за сильного натяжения и увеличения контраста, которые необходимы, тоны растягивают. Если у нас есть много тонов и глубина высокого тона позволяет, то их можно гладко перераспределять. Если у нас мало тонов для работы, мы рискуем получить постеризацию и полосы при растяжке данных.

В ярком изображении наклон верхней части кривой уменьшается в светлых областях изображения. Это сжимает тона и уменьшает контраст этих тонов в изображении.

Это то, что позволяет обращаться к этим данным в линейной форме в высокой битной глубине, что делает изображения с цифровых зеркальных камер и CCD такими мощными для создания астрофотографий. Это позволяет нам вычесть фон неба и светового загрязнения. Это дает нам возможность контролировать нелинейные корректировки и растягивать данные. Эти настройки позволяют выявить детали астрономических объектов, которые скрыты глубоко в том, что мы считаем теневыми участками нормальной фотографии.

o-kosmose.net